Category Archives: chemophobia

The ‘deficit model’ only works half the time when you’re fighting chemophobia

focus group sitting at a table chemicals

The “deficit model” is a widely criticized theory that suggests that people who harbor attitudes of negativity or indifference towards science (in this case, chemistry) do so because they are uninformed about the topic (Chinese: 无知).

People’s misinformation might come from a lack of interest, a lack of exposure or an experience of poor science outreach in the past, where incorrect messages were delivered.

The “deficit model” stipulates that if people knew more about science, they’d naturally become more interested in it. Unfortunately, it doesn’t always seem to work, and the ‘model’ is subjected to routine criticism.

Criticisms of the “deficit model”

  • It is patronizing to the public, which alienates them further from science
  • It implies that there is only one coherent, correct narrative of ‘science’
  • It implies that people who don’t like science are misinformed about it
  • Learning science isn’t always fun
  • Being forced to learn something they’re not interested in could reinforce negative attitudes towards science
  • The public is too varied to attempt to give a “one size fits all” theory of science outreach
  • It ignores the fact that members of the public have individual preconceived ideas about science before they’re introduced to new science information
  • It relies too much on monologue/lecturing the public rather than engaging them in dialogues

Employ alternatives to the “deficit model”

Critics of the “deficit model” tend to advocate solutions that involve dialogue (rather than monologue) with the public. Dialogue works better when the particular public audience in question has pre-existing views about the scientific topic being discussed (called ‘affected/partisan’ public groups).

There are four main types of ‘public’ audiences. The table below summarizes each of these types and how to engage with them, and is adapted from Canek Phillips report from 2013.

table 1 mechanisms of deficit model
Table 1 from Phillips & Beddoes (2013). Click to download.
The general public consists of people with diverse views that represent a cross-section of society. In a group, these views cancel out somewhat, hiding the deviation of views. The “deficit model” of monologue delivery is an effective way to engage such a group.

The pure public is a group of people who have no pre-existing ideas about the topic being discussed. The “deficit model” can engage these audiences as well.

The affected public can only be engaged if their pre-existing views are acknowledged and respected beforehand. Dialogue is an excellent way of doing this. Examples of dialogue-based approaches include science shops, public hearings, citizen judies, stakeholder consultations and focus groups.

The partisan public is sometimes led by charismatic leaders or lobby groups. Their views might have been shaped by influential figures (e.g. Mercola, Food Babe) and the pre-existing views (misconceptions) delivered in this way need to be debunked through respectful dialogue rather than monologue.

In short, before telling your audience something, find out whether they have any pre-existing ideas about that topic. If they don’t, then go ahead with a monologue delivery. If they do, then launch a two-way discussion with them, in which you listen and respect their views. Only then, will they respect your opinion as well. ♦

Our senses are hopeless at calculating risk

We overestimate danger when we're not in control, such as flying as a passenger in an aeroplane.
We overestimate danger when we’re not in control, such as flying as a passenger in an aeroplane.
Humans are irrational beings. Smoking kills 480,000 people per year in the United States, while an average of 170 lives are lost to terrorism each year in the same country. Counterintuitively, terrorism receives more media attention than smoking despite having a relatively tiny risk because we’re predisposed to fear dangers imposed by other people more than dangers with which we choose to engage ourselves.

Another great example is aeroplane crashes. Airlines today have an excellent safety record and flying is usually the safest mode of transport (safer than making the same journey by road or rail). We overestimate the dangers of flying on an aeroplane because someone else is in control.

Conversely, because summer heat waves are a natural phenomenon, we’re prone to underestimating their danger: tens of thousands of people die from excessive summer heat each year in the United States alone.

Irrational: we worry about terrorist attacks more than summer heat waves

Our ‘perceived risk’ almost never matches the ‘actual risk’. In the bubble chart below, the area of the circles above the line represent how much we worry about each risk. The area of the circles below the line represents the actual size of the risk in terms of how many people are harmed each year. In many cases, there is a huge disparity between ‘perceived risk’ and ‘actual risk’.

Our perception of risk almost never matches the actual size of the risk. Adapted from work by Susannah Ertrich.
Adapted from work by Susannah Ertrich
The table below shows the factors that increase and decrease our perceptions of risk.
table1 risks template chemicals

Let’s evaluate two examples. First, smoking:

table2 risks template chemicals

Conclusion: people are predisposed to underestimate the risks of smoking (9:1)

Second example: azodicarbonamide (dough improver) added to bread

table3 risks template chemicals

Conclusion: people are predisposed to overestimate the risks of adding azodicarbonamide to bread (1:9)

This strange psychological quirk is one of the roots of chemophobia that I discuss much further in my upcoming book, Fighting Chemophobia (coming out late 2017).

Try it yourselves: use the table to find out whether we’re likely to over-fear or under-fear aeroplane crashes, climate change and parabens in cosmetics. You’ll find that we overestimate the risks of chemical ingredients in our food and products not because they necessarily pose any danger, but because we have this strangely irrational way of assessing risk in the world around us. ♦

全天然香蕉也是来自化学

2013年底,我准备高中有机化学课的时候设计下面的全天然香蕉成份信息图形。

e585a8e5a4a9e784b6e9a699e89589e68890e58886-1.png

这几年,广告上写的三个关键词有全天然」、有机」、无化学成份」。我想通过这张信息图形告诉大家一切都是化学成份做出来的。大自然生产的化学成份比科学家在实验室里能合成的成份复杂多了。为了简洁我写了几十个组成香蕉的重要成份——还有几千个天然有机化学成份没写上。

全天然香蕉里面有一些成份是有毒性的。但是,因为香蕉里面的剂量极少,所以它们对我们的人体是无害的。大自然对剂量的掌握是非常精准的,自然界中,所有的化学成分都有完美的剂量。这个信息图形的意义是告诉大家:

  1. 世界上的一切都是来自化学
  2. 大自然生产的化学成份比合成成份还复杂多了
  3. 大自然生产的产品(如香蕉)并不纯净,因为有上万种成份在其中
  4. 讲毒理学不讲剂量是完全没有道理的

随心分享!

Combatting Chemophobia With Wine

Ava Winery composes fine vintage wines molecule by molecule in the lab
Ava Winery composes fine vintage wines molecule by molecule in the lab

The wines your great-grandchildren might one day drink on Mars will soon be coming to a bottle near you. Ava Winery is a San Francisco-based startup creating wines molecule by molecule, without the need for grapes or fermentation. With complete control over the chemical profile of the product, Ava’s wines can be created safely, sustainably, and affordably, joining the food technology revolution in creating the foods of the future.

galaxy-class_replicator
Ava Wines’ business model is somewhat akin to the Star Trek replicator!

For Ava, foods in the future will be scanned and printed as easily as photographs today. These digital recreations will be more than mere projections; they will be true chemical copies of the originals, capturing the same nutritional profiles, flavors, and textures of their “natural” counterparts. Our canvas will be macronutrients like starches and proteins; our pixels will be flavor molecules. Future generations won’t distinguish “natural” from “synthetic” because both will simply be considered food.

Consider ethyl hexanoate, although scary-sounding it is the very chemical that gives pineapples their characteristic smell and also fruity wines a tropical note. From pineapples, or indeed other organisms, ethyl hexanoate can be extracted much more efficiently. By sourcing more efficient producers of each of hundreds of different components, wines can be recreated as their originals.

Future generations won’t distinguish “natural” from “synthetic” because both will simply be considered food.

In fact, by eliminating the variability of natural systems as well as potential environmental contamination, this digitized future of food can increase the safety, consistency, and nutritional profile of foods. Such food products can reduce overall land and resource use and be less susceptible to climate fluctuations. Indeed this future will see significant reductions in the costs of food production as the cost of the raw ingredients shifts to more efficient sources of each molecule.

Processed with VSCO with s3 preset
100 to 300 compounds are responsible for the full flavour of a wine.

So why wine?

We knew there would be a controversial love/hate relationship with our mission to build wine molecule by molecule. To the elite who value the high-end wine experience, our molecularly identical creation of the $10,000+ bottle of 1973 Chateau Montelena will be a mockery; but to the public, the $10,000 turned $20 bottle will be a sensation. To the purists who still believe organic is the only way to eat or drink healthily, our wine will get “some knickers in knots”; but to the nonconformists, our wine will be a contemporary luxury made by contemporary technology.

In short, wine is just the beginning. Soon, Ava hopes to build more food products molecule by molecule further blurring these lines between natural vs. synthetic while simultaneously making luxury items available for all. With our groundwork, the Star Trek future of food might be closer than we thought.

Friluftsliv: Norway’s search for true nature

There’s an interesting psychological quirk that makes us yearn for a benevolent, caring Mother Nature that can cure our ailments without any side effects. Academics call it the “naturalness preference” or “biophilia”, and the Norwegians call it “friluftsliv” (literally: free-air-life).

Friluftsliv began in 18th century Scandanavia as part of a romantic “back-to-nature” movement for the upper classes. Urbanisation and industrialisation in the 19th century disconnected Norwegians from a natural landscape to which they’d been so interconnected for over five thousand years.

Norway’s sparse population, vast landscapes and midnight sun (in the summer months, at least) make it an excellent place for hunting and exploration. These ideal conditoins produced some of the greatest trekkers and hikers the world has ever seen. I’ll show you two heart-warming examples.

The first is Norway’s infamous explorer Fritjof Nansen, who (very nearly) reached the north pole in 1896 as part of a three-year expedition by ship, dog-sled and foot. When world war one broke out, Nansen put his trekking knowledge into practice by helping European civilians escape the perils of war and move to safer places. He facilitated several logistical operations in the early 20th century that saw the movements of millions of civilians across Europe. When famine broke out in Russia in 1921, he arranged the transportation of enough food to save 22 million people from starvation in Russia’s remotest regions. Deservedly, he was awarded the Nobel Peace Prize in 1922 for his efforts.

The second example is Norway’s Roald Amundsen, who was the first person to reach the south pole in 1911. Nansen lent his ship, Fram, to Amundsen for a north pole expedition in 1909. Before Amundsen set sail, however, he learned that two rival American explorers – each accompanied by groups of native Inuit men – had already reached the north pole and were disputing the title of “first discoverer” among themselves. When Amundsen finally did set sail, he took Nansen’s Fram vessel to Antarctica instead, where he and his team disembarked and trekked a successful round-trip to the south pole. While Amundsen admits he was inspired by Nansen’s successful polar expeditions, I’m sure that Norway’s vast landscapes, summer sun and long-standing tradition of “Allemansrätten” (the right to traverse other people’s private land) also contributed to Amundsen’s yearning for friluftsliv: the obsessive search for a truly untouched wilderness. (Amundsen 1927)

The world’s first tourist organisations were founded in Norway (1868), Sweden (1885) with the goal of helping Scandinavian elites in their search for true nature. When the Industrial Revolution brought many indoor, sedentary factory jobs to Scandinavia, workers craved the outdoors that their culture had been in harmony with for thousands of years. Elites in the late 19th century signed up to go on expeditions to escape encroaching urbanisation. Later, in 1892, a group of Swedish soldiers founded the non-profit organisation Friluftsfrämjandet, which provided outdoor recreational activities to the labouring classes with a particular emphasis on giving free skiing lessons to children. Thanks to Friluftsfrämjandet, and the working-time legislations that came into play in the early 20th century, the middle and lower classes were finally able to pursue their obsession with finding nature, or friluftsliv.

“…[W]e arrange activities to win great experiences, together. We hike, bike, walk, climb, paddle, ski and skate together. We train the best outdoor guides and instructors in Sweden. And we have fun together!” (Friluftsfrämjandet 2017)

Hans Gelter, Associate Professor at Luleå University of Technology, writes that even friluftsliv has become commodified in the age of consumerism. He claims that the high prices commanded for outdoor equipment and transportation to remote places act as a barrier between hikers and the nature they claim to be seeking. (Gelter 2000) In Deep Ecology: Living as if Nature Mattered (1985), Timothy Luke argues that outdoor pursuits are now more about testing fancy equipment than finding a deep connection with Mother Nature. Snowboarding is now more about testing the latest boards and wearing eye-catching outfits than it is about enjoying pristine mountain vistas. Golf is now as much about donning luxury clothing brands and using expensive golf clubs as it is about enjoying the outdoors. Even many shower gels and body washes now contain a drop of lemon essence or avocado oil – for which you pay an extra dollar – that adds nothing to the utility of the product. We do this because we crave nature in an industrialised world.

My book Fighting Chemophobia (coming at the end of 2017) is approaching 60,000 words in length. Copious reading and lively discussions with many colleagues and academics is helping to shape the stories in the book.

Follow me on twitter to stay up-to-date with the book’s progress.

Fighting Chemophobia

Bananas contain unpronounceable ingredients, too. Ingredients of an All-Natural Banana by James Kennedy

It’s been exactly three years since I uploaded the original banana poster.

In 2014, I soon followed up with podcasts, radio appearances, press interviews, a T-shirt Store and twelve more fruit ingredient labels. I’ve done six more customised fruit ingredients labels for private clients. The images have since appeared in textbooks, corporate promotional material, YouTube videos, T-shirts, mugs and aprons.

Momentum built in 2015. Parodies emerged online, and a copycat image appeared in one Chemistry textbook. I started writing about chemophobia and consulting with experts on how to address the issue. In short, it’s very, very complicated, and has deep evolutionary origins. I set a goal to understand chemophobia and provide a roadmap to tackle it effectively.

In 2016, my voluminous OneNote scribblings turned into a book. I have a first draft saved on OneDrive (thank you for keeping it safe, Microsoft) and I’ll be proofreading it on an long-haul intercontinental flight for you later today.

My next book, tentatively titled “Fighting Chemophobia”, will be published in late 2017.

I promise that my book “Fighting Chemophobia” will contain the following:

  • Stories you can share on a first date;
  • Maths – but just a little;
  • Chemistry – but not too much;
  • A deep exploration of chemophobia’s roots;
  • Tangible solutions to chemophobia;
  • More stories. Lots of true stories.

This “Fighting Chemophobia” book is for:

  • Educated people who are interested in a fascinating, growing social phenomenon;
  • People who want to settle the ‘natural’ vs ‘artificial’ debate;
  • Chemistry people;
  • People who love reading.

To get your hands on a copy, subscribe to this blog for email updates. Just click ‘Follow’ somewhere on this page (its location depends on which device you’re using).

I promise that throughout 2017, you’ll receive teasers, snippets and discarded book fragments via this blog to get you excited.

Mystery supervolcano is at the root of the ‘mad scientist’ stereotype

The Mad Scientist stereotype was caused ultimately by a supervolcano that nobody can locate to this day
The Mad Scientist stereotype was caused ultimately by a supervolcano that nobody can locate to this day

In 1808, a massive volcano erupted somewhere on Earth. So large was the eruption that it bellowed sulfate particles into the atmosphere that caused significant global cooling in the years that followed (Guevara-Murua 2014). Despite its gargantuan size, nobody to this day has been able to locate the volcano or find any direct eyewitness accounts of its eruption. The volcanic eruption of 1808 remains an unresolved scientific mystery to this day.

How do we know this mystery volcano ever erupted at all? The first piece of evidence is an increase in sulfuric acid concentration found in Greenland ice cores, which are a characteristic ‘chemical signature’ of sulfur-rich volcanic eruptions (Dai 1991). The only major spike in sulfuric acid concentration in Greenland ice that doesn’t align with a real volcanic eruption observed somewhere on Earth is the spike found around 1808, suggesting the existence of this mysterious volcano.

The second piece of evidence is called the ‘sulfur isotope anomaly’. Deposits of sulfur buried deep underground have a different isotopic composition compared with sulfur sources on the planet’s surface. In the same way that we can monitor the effects of fossil fuel combustion on atmospheric concentrations of carbon dioxide, we can quantify the amount of sulfur emitted from volcanoes by measuring changes in the relative quantity of sulfur-33. A huge spike in Δ33S suggests an enormous volcanic eruption occurred – and that’s exactly what we see when we study samples from the year 1808.

The third piece of evidence comes from trees. Trees grow at different rates depending on the climate. In particular, trees grow faster when it’s warmer (but not too hot, of course, which inhibits their growth somewhat), and they grow more slowly when it’s cold. Counting tree rings can reveal not only the age of the tree, but measuring the thickness of each tree ring allows researchers to estimate the amount of growth the tree accomplished in a given year. By measuring different trees in the same region, researchers can gain insight into the past climate of that particular region. Analysis of tree rings has shown that bristlecone pine trees had drastically decreased growth rates in the summer of 1809, suggesting the climate cooled significantly around that time (Salzer 2007). Cooling might have been caused by a giant volcano.

While none of this evidence amounts to a direct observation that the mystery supervolcano ever erupted, we do have eyewitness accounts of volcanic ejecta from exactly the same time. All the evidence, taken together, definitely points to the fact that the supervolcano did in fact exist. Scientists, in fact, are certain.

The first eyewitness account was written a highly respected Colombian scientist called Francisco José de Caldas, who described “a transparent cloud that obstructs the sun’s brilliance” over Colombia for several months from December 1808 to February 1809. The second eyewitness was a physician named José Hipólito Unanue who wrote about seeing “sunset afterglows” over Peru in the same time period. Both these observations are characteristic of large volcanic eruptions.

The fact that atmospheric haze was observed in both Colombia and Peru, which are in the southern and northern hemispheres respectively, suggest that this volcano was located somewhere in the tropics. These observations imply that ash was cast 2,600 km in all directions but the effect on the climate was global. One researcher is quoted as saying the mystery volcano “blanketed the planet in ash”. (Cole-Dai n.d.)

Vulcanologists rate volcanic eruptions on a scale called VEI (volcanic explosivity index), which is similar to the Richter scale for earthquakes. It’s a logarithmic scale that approximates the volume of ash that’s ejected by a particular eruption. The logarithmic nature of the scale means that while a VEI-3 eruption is called “severe”, a VEI-4 event is called “cataclysmic”. In 2010, Eyjafjallajökull erupted in Iceland, resulting in ash cloud so large that it caused severe delays to air traffic across Europe, Greenland, Russia and eastern Canada. The Eyjafjallajökull eruption was a VEI-4 (“cataclysmic”) event.

When Mount Saint Helens erupted in 1908, killing 57 people and causing $1.1 billion of damage across Canada and the US, it was classified by vulcanologists as a VEI-5 (“paroxysmic”) event. Alarmingly, the mystery volcano in 1808 was at least 10 times more devastating than Mount Saint Helens in terms of the volume of ash ejected. The mystery volcano was a VEI-6 event, and it’s described by vulcanologists as “colossal”.

Volcanic ash acts “like a giant window shade, reflecting sunlight and lowering temperatures on the ground for years afterward” (Cole-Dai n.d.). Temperatures across Europe were measurably lower in the years that followed as the ash cloud obscured incoming rays from the sun. Trees grew more slowly (as evidenced by tree ring data), harvests were diminished and the climate cooled for several years afterwards.

This cooling came at a very inconvenient time. Temperatures were already lower than usual in the northern hemisphere due to the Little Ice Age. In a further devastating blow, a second, much larger volcano erupted on April 10, 1815. It was located on Mount Tambora in Indonesia and had an intensity of VEI-7 or “super-colossal” (this is just one level away from VEI-8, which is named rather horrifyingly, “apocalyptic”). Mount Tambora’s eruption was so ‘super-colossal’ that 90% of the islanders on Tambora were killed by lava flowing down from the sky. Downpours of hot ash killed trees and fish for miles around, covering them with inches of grey dust. Hot ejecta was propelled eighteen miles into the air above the volcano producing a ‘boom’ that could be heard a thousand miles away. People across Indonesia mistook the volcanic ‘boom’ for a ship’s rescue signal or a bomb detonation. Some army officials across Indonesia’s vast archipelago even dispatched troops to defend their islands after mistaking the ongoing volcanic roar for the sound of an invading army.

The sulfur dioxide released from the super-colossal Mount Tambora explosion reacted with gases in the stratosphere to produce 100 million tons of sulfuric acid, H2SO4. The sulfuric acid condensed and remained suspended in an ‘aerosol cloud’ (basically a cloud) that was accelerated by stratospheric jet streams (basically very strong winds) until the entire globe was smeared with a thin layer of H2SO4. This is a rare event, and only happens following truly colossal volcanic eruptions. Interestingly, H2SO4 reflects incoming rays from the sun, and temperatures, which were already low as a result of the mystery supervolcano in 1808, were lowered yet again. The year 1815 was, as some writers put it, “the year without a summer”. Temperatures that year were about three degrees lower than usual across Europe, which is incredible considering that both volcanoes erupted near the equator.

If the Mount Tambora volcano was a little smaller, the sulfuric acid would have formed in the atmosphere instead, and would have rained back down to the surface as acid rain. But at stratospheric altitudes, far above the clouds, the sulfuric acid haze stayed there for years acting as a kind of sunscreen for our planet.

How does this relate to chemophobia? The combination of the Little Ice Age, the 1808 mystery eruption and the super-colossal eruption of 1815 had cooled the climate to such an extent that the weather in Lake Geneva was terrible in the summer of 1815. Who was there at the time? Mary Shelley, of course, who was staying indoors drinking because the weather was too bad to go boating. Cold, bored and disappointed at the lack of a ‘summer’ holiday, Shelley and her companions set about writing ghost stories instead. Among them was Frankenstein, which featured the original, quintessential stereotype of a mad scientist. The cliché lives on to this day.

Thanks, volcano.

Chemtrails conspiracy theory gets debunked

conds
Contrails or ‘chemtrails’? The myth has just been debunked

Since 1996, there has existed a niche group of conspiracy theorists in western countries that believes that the government (or some other authority) is spraying compounds out the back of commercial/military aircraft for a plethora of reasons. Seventeen percent of Americans believe a hilariously-named “SLAP” project (secret large-scale atmospheric program) exists in the United States, and 2% are ‘certain’ of its existence. Conspiracy theorists photograph normal aeroplane contrails and upload them to the internet, calling them ‘chemtrails’, and using them as evidence of SLAP.

The conspiracy theorists cite “mind control”, “radar mapping”, and “chemical weapons testing” among suspected motives, and they even have detected elevated concentrations of barium and aluminium in soil and atmosphere at certain locations. Conspiracy theorists use these chemical data to support their belief in the SLAP idea.

Just this month, the results of a comprehensive review of all the so-called evidence for contrails was conducted – by an impressive 77 experts in atmospheric chemistry – and they’ve concluded that the conspiracy theory seems highly unlikely to be true.

First, what are contrails?

Contrails are ice-clouds that emerge from the backs of jet engines on aeroplanes. They vary in width, colour and persistence depending on the temperature, air pressure and humidity.

Combustion in jet engines produces two products: water vapour, H2O(g), and carbon dioxide, CO2(g). These gases exit the jet engine and quickly lose momentum, eventually forming a trail in the air behind the aeroplane. The freezing cold temperatures at aeroplane altitudes freezes the water vapour in its tracks (but not the carbon dioxide – it’s not that cold!). A contrail is essentially a trail of snowflakes!

What did the scientists find?

Seventy-seven experts found 100% agreement that SLAP was not the simplest/most likely explanation for the following phenomena:

http://www.ess.uci.edu/~sjdavis/SLAP/
Source: http://www.ess.uci.edu/~sjdavis/SLAP/

Why am I mentioning this?

The ‘chemtrails’ conspiracy emerged as one of the most recent forms of chemophobia. It originated in 1996 when a paper was published by the United States Air Force called Weather as a Force Multiplier: Owning the Weather in 2025 suggested spraying compounds from aeroplanes to help engineer the climate. This seeded the conspiracy, and ebbing public trust of experts/scientists helped it to balloon out of proportion from there.

Until this study was conducted, the scientific community had no credible evidence to the contrary: we had no rebuttal to offer the ‘chemtrails’ crowd. This study finally puts the overwhelming majority of evidence (and 76 of the 77 experts involved) in favour of there being no such SLAP project – and no ‘chemtrails’ to speak of.

Chemophobia

It’s widespread, irrational, harmful, and hard to break. One excerpt from a New York Times article on this story said:

“The goal, the researchers say, is not so much to change the minds of hard-core believers, but to provide a rebuttal — the kind that would show up in a Google search — to persuade other people to steer clear of this idea.”

This study, it seems, is aimed at the neutral 60%. This is exactly how we need to be fighting chemophobia.

Question: Have similar studies been conducted for the other forms of chemophobia that exist?

LIVE Chemophobia Session Thursday 11th August @ 2pm ET

Click to register for the free webinar
Click to register for our free webinar hosted by the American Chemical Society

What can I expect to learn?

  • What does the public think of chemistry, chemicals and chemists?
  • How prevalent is chemophobia?
  • How did we evolve the propensity to become chemophobic?
  • Who were the first chemophobes?
  • What is a “chemical”?
  • Why have chemists’ efforts to fight chemophobia been to no avail?
  • What’s the ultimate cure for chemophobia, and who’s willing to fund it?
  • What can you do as a chemist to combat chemophobia?

Registration is open

Click the above banner to register for the free webinar.

Chemists need to speak the same language as the public

scientist-clipart-science-clip-art-school1
Chemists and the public need to be speaking the same language

Chemicals

The public uses the word ‘chemical’ to mean ‘synthetic substance’. Chemists have traditionally opposed this definition and stuck with ‘substance’ instead, responding with “everything is a chemical” in defence.

Arguing over definitions is futile and avoids the elephant in the room – that there’s been almost no public outreach to support the field of chemistry in the last few decades to counteract growing public skepticism of science (and of chemistry in particular).

Furthermore, it’s even more futile arguing over definitions when the Oxford English Dictionary provides a clear answer to this debate:

chemical (noun) – a distinct compound or substance, especially one which has been artificially prepared or purified

I ask all chemists to embrace the dictionary definition of ‘chemical’ and stop bickering with the public over definitions.

My main concern here is that if “everything is a chemical”, then it therefore follows that ‘chemophobia’ is the fear of everything, which is nonsensical. If we’re going to talk about chemophobia, we’re also going to have to accept the definition of chemical that the OED and the public have been using for a long time: that “chemical” = “artificially prepared substance”.

So what do we call non-synthetic chemicals? Try using a word with less baggage such as “molecule”, “compound”, “substance” or “element” where it’s relevant. By using these words, we avoid the natural=good/artificial=bad divide, which is the central assumption of chemophobia.

Chemophobia

‘Chemophobia’ is an irrational aversion to chemicals perceived as synthetic.

The word ‘chemophobia’ refers to a small subset of people who are not only disenfranchised by science, but who have subscribed to alternative sources of knowledge (either ancient wisdom or – sadly – Google). Many people with chemophobia are protesting against the establishment, and this is particularly evident in the anti-GMO movement. At the core of most people who oppose GMOs is a moral/political opposition to having their food supply controlled by giant corporations. No number of scientific studies concluding the safety and reliability of GMO crops will succeed in persuading them otherwise because the anti-GMO movement is founded on moral/political beliefs, not on science. By throwing science at them, we’re wasting our time.

More important than chemophobia

The Royal Society of Chemistry’s recent report on Public Perceptions of Science showed roughly a 20-60-20 range of attitudes towards chemistry.

206020.png

No matter how the RSC phrased the question, roughly 20% of the UK public who were surveyed indicated a negative attitude towards chemistry, and another 20% showed a positive attitude. The 60% in the middle felt disconnected from the subject – maybe disliked it in school – but felt neutral towards it when asked.

Chemophobia afflicts some people in the bottom 20%. They gave negative word-associations with ‘chemistry’ (e.g. ‘accidents’, ‘dangerous’ and ‘inaccessible’).That bottom 20% group is so vocal (e.g. Food Babe) that they distract chemists from the 60% in who are neutral. The ‘neutral’ crowd is a much larger audience that’s much easier to engage/persuade through outreach efforts. We should focus on talking to them.

Neil deGrasse Tyson has said in interviews that his huge TV hit show COSMOS was aimed at “people who didn’t even know they might like science”. That’s the middle 60%. Brian Cox’s amazing Wonders of the Universe was aimed at a similar audience – but chemistry has nothing similar to offer. We’re engaging those who are already interested (with academic talks and specialist journals) and we’re engaging with the bottom 20% via social media and comments on foodbabe.com… but why haven’t we started engaging the middle 60%, who gets most of their science information from TV? How many chemistry TV icons can you name? Where are the multi-channel launches of big-budget chemistry documentaries*? Chemistry is lagging far behind biology and physics in that regard.

*BBC Four’s Chemistry: A Volatile History (2010) doesn’t count – it was only three episodes long, got no further than ‘the elements’ and was presented by a PHYSICIST!

Focus on the 60% who are ‘neutral’

I ask chemists to focus on addressing the disinterested 60%. From an outreach perspective, this is much more fun and is positive rather than reactionary. By engaging those who feel neutral about chemistry, we might even empower enough of the public to fight chemophobia (online, at least) by themselves – without our direct intervention.

I urge chemists to tell the public what you do in simple terms. Describe your work to the public. Tweet about it. Participate in your university/faculty’s YouTube videos by explaining your work and its relevance. Offer advice as a science correspondent for local media outlets (many universities have ‘expert lines’ – get involved). Give your ‘talk’ at local schools – it make a HUGE difference to students’ perceptions of science. Devote 5% of your working time to doing outreach. As a teacher, I’m practically doing it full-time.

Plus, we urgently need a chemistry TV hero. Could someone do that, too, please?

Registration is open!

live-webinar-pic

About the webinar

James Kennedy will explore the rise of chemophobia, an irrational fear of compounds perceived as ‘synthetic’, and the damage it can cause in this interactive webinar. We’ll examine its evolutionary roots, the factors keeping it alive today and how to fight chemophobia successfully.

What You Will Learn

  • Origins of chemophobia as an irrational psychological quirk
  • Chemistry teachers, Walter White, materialism and advertisements are all fuelling chemophobia today
  • Fighting chemophobia needs to be positive, respectful, multifaceted, and good for consumers

Webinar Details

  • Date: Thursday, August 11, 2016 @ 2-3pm ET
  • Fee: Free to Attend
  • Download Slides: Available Day of Broadcast

Register your attendance here.

slide
Slide from the lecture. Click to register to attend.

ASAP Science Video: This is NOT NATURAL

this is not natural
Click to watch AsapSCIENCE’s video on YouTube

AsapSCIENCE has made an awesome video called This is NOT NATURAL based on the work I’ve been doing on this site. Watch the video and read the comments thread for some insight into the discussion (and misinformation) that spreads online regarding ‘natural’ and ‘healthy’ products.

One of the most upvoted comments is actually a thinly-veiled advertisement for a book called “The Coconut Oil Secret: Why this tropical treasure is nature’s #1 healing superfood”. Click through to their product page and you’ll see why the natural/organic sector needs more regulation, and why consumers need to be better-informed.

Check out the video below, or click here to visit the comments thread on YouTube.

Personal Care Product Ingredients: Are Natural, Chemical Free, and Organic Always Best?

Personal Care Product Ingredients: Are Natural, Chemical Free, and Organic Always Best? Reserach Review Thumbnails
Click to download full article via Research Review NZ/The Parent Centre, NZ
Shaun Holt and I recently co-wrote a paper for Research Review on the ingredients found in personal care products (e.g. shampoos, lotions and cosmetics). We analyse the recent surge in demand for ‘natural’ products and the beliefs that have been driving it.

We’re not saying that natural products don’t work – in fact, quite the opposite. We’re saying that natural products, just like synthetic ones, can be harmful, beneficial or neutral depending on the dose and upon how they’re used. 

Article preview

The terms “natural”, “chemical free” and “organic” are used frequently to market personal care products. However, the exact meaning of these terms is still unclear for consumers, and the use of these terms on labels is still unregulated in some markets. The purpose of this review is to provide clarity on the meanings of these terms and the implications of their application in the marketing of personal care products. The importance of applying a science-based approach to the assessment and recommendation of personal care products is also emphasised. This review is intended as an educational resource for healthcare professionals (HCPs), including nurses, midwives, pharmacists, and pharmacy assistants.

Read the rest of the article here.

‘Chemophobia’ is irrational, harmful – and hard to break

Chemophobia lab.jpg
Kiran Foster/Flickr

We all feel a profound connection with the natural world. E O Wilson called this sensation biophilia: ‘the urge to affiliate with other forms of life’. That sense of connection brings great emotional satisfaction. It can decrease levels of anger, anxiety and pain. It has undoubtedly helped our species to survive, since we are fundamentally dependent on our surrounding environment and ecosystem. But lately, biophilia has spawned an extreme variant: chemophobia, a reflexive rejection of modern synthetic chemicals.

Continue reading this article on AEON IDEAS…

The Psychology of Chemophobia – Part 5

Bananas contain unpronounceable ingredients, too. Ingredients of an All-Natural Banana by James Kennedy
Bananas contain unpronounceable ingredients, too

What is chemophobia?

The scientific community describes chemophobia as a “non-clinical prejudice” – rather like homophobia or xenophobia – that is, not a true medical phobia but a learned aversion to ingredients created in laboratories. Researchers Paul Slovic and Baruch Fischhoff identified a number of affective characteristics that help to explain deep and persistent overestimation of chemical risk. They found that people tend to overestimate human-made risks, and underestimate natural risks.

On Artificial Formaldehyde

The most dangerous consequence of this quirk is people’s fear of formaldehyde. Formaldehyde is a naturally-occurring compound that is found in fruits such as peaches and pears, vegetables, meat, eggs and foliage, and is found in very high concentrations in Peking duck, smoked salmon and processed meats (e.g. ham and sausages). These so-called ‘natural’ sources of formaldehyde are usually considered acceptable by the public, while artificial sources of formaldehyde such as vaccines and baby shampoo, have caused public outcry.

“People tend to overestimate human-made risks, and underestimate natural risks.” – Slovic & Fischhoff

One such outcry forced Johnson’s to undertake one of the biggest reformulations in history, and remove all traces of formaldehyde from its products. This was despite the fact that there was so little formaldehyde present in their baby shampoo that you’d need to take 40 million baths per day to reach dangerous levels. Johnson’s spent tens of millions of dollars on a reformulation project not because they were legally obliged to, and not because there was ever a safety risk, but because they were under pressure from irrational consumers to change their recipe. I call them irrational because nobody ever petitioned for an expensive reformulation of smoked salmon, Peking duck, peaches or pears because of formaldehyde fears.

Vaccines also contain tiny amounts of formaldehyde. Irrational fear of ‘artificial’ formaldehyde has led some people to avoid vaccinations altogether even though the level of formaldehyde found in a vaccine is 80 times less than in a single pear. People’s irrational fear of formaldehyde has caused many preventable deaths; anti-vaccination movements have caused measles outbreaks in California (2015), Germany (2015), Wales (2013) and other places.

Chemophobia is the irrational fear of chemicals, particularly artificially-created chemicals

People overestimate risks that are imposed on us, like contaminants and pollutants, than risks we engage in voluntarily

Another reason people fear formaldehyde in vaccines (but not in pears) is because humans are irrationally hard-wired to overestimate the magnitude of risks that are imposed upon us. Most people over-fear terrorism and under-fear obesity. Terrorism killed 32,000 people in 2015, yet obesity kills tens of millions of people each year. Despite that, terrorism remains a key subject in American presidential debates because people’s fear of terrorism is inflated out of proportion by the fact that it’s imposed on the public rather than being caused by the public themselves. Americans are 33,000 times more likely to die from a heart-related disease than from terrorism, yet terrorism tops people’s list of fears due to the irrational quirks of human risk perception.

We all are born with these afflictions, and only science education can help us overcome them

The psychology behind these irrational assumptions is innate and is present in all of us. It’s only with science education and a basic knowledge of toxicology that we can begin to assess the risks associated with different compounds in a meaningful way. Only science education can fight chemophobia and allow people to make rational decisions about healthcare, skincare and nutrition.

This post is part 5 in a weekly series about chemophobia. Not only are people less afraid of natural toxins than synthetic ones, but in some cases, safety legislation is more lenient when it comes to natural threats vs artificial ones. Next week, we’ll explore some specific examples of toxins that are present (naturally and artificially) in the foods we eat.

(Almost) Nothing is Truly ‘Natural’ – Part 4

Cezanne nothing is natural fruit and vegetables painting still life
Nothing on this table is natural – not even the fruits. The Basket of Apples by Cézanne

Corn isn’t ‘natural’

In 2014, I created a series of infographics to help convey this message. Corn, for example, used to be a spindly grass-like plant called teosinte, which Native Americans farmed and bred through artificial selection until it resembled the yellow corn of today.

In 9000 years, sweetcorn has become 1000 times larger, 3.5 times sweeter, much easier to peel and much easier to grow than its wild ancestor. In the 15th century, when European settlers placed new selection pressures on the crop to suit their exotic taste buds, the corn evolved even further to become larger and multi-coloured. Corn no longer resembles the original teosinte plant at all.

Watermelon isn’t ‘natural’

Watermelon began as a hard, bitter fruit the size of a walnut. It caused inflammation and had an unpalatable bitter taste. Thousands of years of artificial selection (unintentional genetic engineering) have resulted in a modern watermelon that bears no resemblance to its African ancestor. Modern (artificial) watermelons are sweeter, juicier, more colourful and easier to grow than their ancestral varieties.

Peaches aren’t natural, either

Peaches used to be hard, cherry-sized fruits with giant pips. Like corn and watermelon, peaches became larger, sweeter and juicier over thousands of years of inadvertent genetic engineering.

Bananas, wheat, pigs and all farmed animals and plants are not natural

Before agriculture, carrots were white and spindly. Wheat was tall and scrawny with little calorific value. Apples were tiny and sour with giant pips (like crab-apples today). Strawberries were tiny, bananas had stones in them, and pigs were viscous creatures with tiny backsides that made for a not-so-delicious ham. Cows didn’t produce much milk (just enough for their own calves) and chickens were skinny little creatures that laid eggs weekly rather than daily. Every species that’s ever been farmed by humans has been genetically modified over time as a result.

I keep making this point because our ancestors deserve credit for their hard work: they toiled in the fields for thousands of years to breed plants and animals that are suited to our modern tastes and lifestyles. For modern humans to call the results of our ancestors’ hard work ‘natural’ is an insult to the millions of ancient farmers who worked so hard to produce them.

Engineers (including genetic engineers) know that humans have toiled for millennia to change nature and suit it to our own needs – animals became tamer and meatier, and plants started producing more edible portions. I want to counteract the misconception that humans encountered nature in a ‘pristine’ state.

Great documentary snippet – Animal Pharm

[ancient humans] toiled in the fields for thousands of years to breed plants and animals that are suited to our modern tastes and lifestyles. For modern humans to call the results of their hard work ‘natural’ is an insult to our ancestors.

I show the above documentary my Year 10 Science students to demonstrate what is currently being produced using genetic engineering techniques. The video explains all the concepts mentioned in this article and is accessible for and educated audience of any age.

This post is part 4 in a weekly series on chemophobia. Next week, we’ll look at the psychology behind chemophobia.