Category Archives: Education

Posts about education, university admissions, the test-preparation market and graduation

Kennedy Rainbow Cell

Kennedy Rainbow Cell electrolysis chemistry demonstration initial setup aerial view
Initial Kennedy Rainbow Cell setup

Demonstrate electrolysis with an electrolytic cell in a petri dish.


  • 1 × Large petri dish
  • 1 × DC Power pack
  • ~50 mL Distilled water dH2O(l)
  • ~3 g potassium nitrate powder KNO3(s)
  • 2 × Graphite electrodes
  • 2 × Wires with crocodile clips
  • 1 × Clamp and stand
  • 1 × Very strong static magnet
  • 1 × Roll of sticky tape (any type)
  • ~10 drops of universal indicator
  • ~50 mL dilute HNO3(aq)
  • ~50 mL dilute KOH(aq)
  • 1 × Spatula


  1. Place petri dish on clean, light-coloured bench and add distilled water until it is two thirds full
  2. Add ~10 drops of universal indicator and observe the colour.
    Q: What pH is the distilled water? (You’ll be surprised!)
    Q: Why is/isn’t the colour green?
  3. Add ~3 g of potassium nitrate to the petri dish and stir using a spatula until completely dissolved
  4. Adjust the pH of the distilled water carefully using the nitric acid and potassium hydroxide as required. Try to make the universal indicator colour green (as pictured) ~pH 7
  5. Attach one electrode to each of two wires using crocodile clips
  6. Dip each graphite electrode into the green solution at opposite sides of the petri dish. Hold these electrodes (and wires) in position by in position by sticky-taping each wire to the surface of the workbench
  7. Demonstrate the strength of the magnet by attaching it to the clamp. Carefully, clamp the magnet into the clamp and position the magnet 2 mm above the surface of the green solution
  8. Ensuring the power is turned off, very carefully, attach the wires to the DC power pack according to the manufacturer’s instructions
  9. Turn the voltage to zero (or very low) and turn on the power pack
  10. Turn the voltage up slowly (12 volts worked well) and observe any changes you might see in the Kennedy Rainbow Cell


  • Turn off the power pack and stir the solution. Explain why the colour goes back to being green. (If it’s not green, explain that, too!)
  • Turn the magnet upside-down (TURN OFF THE POWER FIRST)
  • Reverse the polarity of the wires
  • Use AC current instead of DC
  • Use different indicators
  • Why would using NaCl(aq) be dangerous in this cell?
  • How can you maximise the swirling?
  • How can you make this experiment much more epic?

Click to download Kennedy Rainbow Cell worksheet (PDF)

Safety considerations

  • Make your own risk assessment before carrying out this experiment
  • The strong magnet is capable of attracting both wires to itself. Don’t be touching the exposed parts of the crocodile clips when this happens. If this does happen, immediately turn off the power pack and fix the problem. Secure the wires with more tape. Don’t touch the electrodes while the Cell is operating.
  • Don’t use chloride salts or hydrochloric acid in this experiment. The voltages involved can cause the production of toxic chlorine gas if sodium chloride is used. Use nitric acid and potassium nitrate instead.
  • Make sure the wires don’t touch each other.
  • Again, make your own risk assessment before carrying out this experiment



This cell is potentially dangerous. I accept no responsibility for and loss, damage or injury caused by the operation of a Kennedy Rainbow Cell. If you’re under 18, always get adult permission before you make this type of cell.

Slow Reading Makes You Smarter

books open random pages

“Why bother reading?” is a question I’m asked occasionally by students, and “reading makes you smarter” is my standard response. This week, I want to expand on this fact and give some evidence for reading being a major contributor not only to academic success, but to success in many other aspects of life as well.

Reading improves your IQ and EQ

Firstly, there’s convincing evidence by Mar et al., (2009) that people who read fiction have greater ability to understand others’ emotions, emphasise with them and view the world from their perspective. In other words, reading increases your emotional quotient (EQ).

Second, there’s convincing evidence that reading increases your vocabulary. Cunningham & Stanovich (2001) penned an excellent analysis that includes evidence from many other studies that a person’s vocabulary is increased fastest by reading, particularly reading books outside of school hours, than by learning lists of vocabulary on their own.

Improving your EQ has obvious benefits. But what are the advantages of increasing your vocabulary? Increased vocabulary has been shown to be linked with increased intelligence and socioeconomic status. Even if the link is correlative and not causative, people will still benefit from the perceived intelligence that an increased vocabulary brings about.

Furthermore, Olson, D. R. (1986) writes:

It is easy to show that sensitivity to the subtleties of language are crucial to some undertakings. A person who does not clearly see the difference between an expression of intention and a promise or between a mistake and an accident, or between a falsehood and a lie, should avoid a legal career or, for that matter, a theological one.

It has also been widely argued in the literature that reading can increase vocabulary faster than verbal interactions because our written vocabulary is so much more diverse than our spoken vocabulary.

What type of reading should I be doing?

Deep reading is the most effective way to increase your IQ and EQ.

Deep reading involves:

  • decreased physical activity while reading
  • zero distraction (or immunity to distraction: being ‘in the zone’)
  • reading for extensive periods of time: many hours in one sitting
  • processing the things you read in a meta-cognitive way, e.g. writing book reviews or making notes as you read

Deep reading is vigorous exercise from the brain. It increases our capacity for empathy in real life. Deep reading is slow, immersive, rich in sensory detail and emotional and moral complexity, and is very different from the kind of reading we do on the internet or even in school. Deep reading is a distinctive experience, different in kind from the mere decoding of words. Victor Nell reported in 1988 that deep readers read their favourite pages more slowly than average, and that deep reading is usually accompanied by a significant decrease in physiological activity. He even noted that deep reading sets the reader into a psychological state akin to a hypnotic trance.

“…deep reading sets the reader into a psychological state akin to a hypnotic trance.” – Victor Nell (1988)

Can I use an iPad or an e-reader?

Not for deep reading, no. Use an e-reader or an iPad for reading magazines and news articles only. Not only are electronic devices prone to distracting you (under the ruse of ‘multitasking’), but studies have shown that readers who read books on electronic devices:

While reading can be done on electronic devices, deep reading needs to be done from paper. Not only are printed books free of popup notifications and advertisements, they also kinder on your eyes (because they’re not backlit) and lend themselves better to being highlighted and annotated in the margins if required.

Read more about 10 reasons print books are better than e-books on Huffpost

I hate reading. Why do I hate reading?

Here’s a flowchart derived from Cunningham & Stanovich that explains why some people hate reading. Their premise is that people who hate reading have been introduced to books that are too difficult so the excessive focus on the meaning of individual words distracts people from the meaning of paragraphs or chapters as a whole.

flowchart for reading article
Adapted from Cunningham & Stanovich (2008)

It’s therefore important to choose books of an appropriate reading level.

So what should I read (or, ‘deep read’)?

Choose a genre that matches your interests and a medium that matches your reading level. The material you read should be not too easy and not too difficult. Here’s a rough guide to the difficulty level of different types of media.

reading materials help you to become more intelligent

Occasionally, try to expand your horizons by challenging yourself to read something you wouldn’t normally read. Here are some great ways to read outside your comfort zone:

  • swap books with a friend;
  • get books recommended to you by a teacher, tutor or a family member;
  • participate in a book club, in which you read a new book each month or fortnight.

How much should I read each day?

Aim to read 3,300,000 words per year. That equates to about one book per week, which puts you above 95% of the adult population.

In 2012, when I realised I wasn’t reading enough, I decided to read a book every two days. I posted all the reviews online as a way of holding myself accountable to reading them thoroughly and deeply. Reading this much was difficult and time-consuming at first, but, just like sports, I become faster and more proficient as I read more books.

number of hours of independent reading

Read one book per week and review it online to keep yourself accountable.


Get involved in deep reading by reading one book per week and posting the reviews online. Here’s your new reading process for the new year.

your new reading process for 2016

Read more about why reading is important here

Top Tips for University

Students attend a lecture at Macquarie University, Australia

You’ve graduated and you’re waiting for VCE examination results day on December 14th, 2015. In the meantime, you can rest, celebrate, and get ready for university.

When I completed my master’s degree at Cambridge University in 2010, I took note of the habits and traits that helped me to succeed in university. I didn’t maintain all of them all the time – rather, I fluctuated between doing these things and doing the exact opposite – but the process has taught me which character traits and mental attitudes are necessary for academic success in university. Here are my top ten tips for university. Each one of these tips is written carefully from my personal experience.

  1. If you have a strong opinion on something, be prepared for it to change COMPLETELY several times before graduation. That’s how we grow and learn.

  2. Always know where you’re going from now on. Always have a goal and you’ll never feel lost.

  3. Ask for help from professors or lecturers if you don’t understand something. (They will not reach out to you in university.)

  4. Read all the textbooks on the reading list. Read the whole books (not just the required chapters) if you have time.

  5. Textbooks are always more important than academic papers despite what your lecturers tell you. Read the textbooks first.

  6. Always make notes as you read.

  7. Arrive early to lectures to get the best seats and to make friends with like-minded, punctual and keen students before the lecturer arrives.

  8. Socialise carefully. Will joining this particular group/team help you to grow as a person? Some groups will help you grow; some will drag you down. Choose carefully!

  9. Don’t be too stubborn but don’t be too easily influenced, either. Be in the middle.

  10. Smile! 😃

Last-Minute Tips for the VCE Chemistry Exam

You’ll be sitting here tomorrow.

Only positively-charged fragments from mass spectrometers produce a peak on the spectrum. Uncharged free radical fragments are not detected because they lack a positive charge.

Weak acids with a lower Ka value are the weakest… this means that they ionise to a lesser extent when in aqueous solution, giving rise to a lower concentration of available H3O+(aq) and a higher pH.

The conversion of triglycerides (a type of ester) into biodiesel (another type of ester) is called transesterification.

The covalent bonds between deoxyribose and phosphate groups in DNA form a group of atoms called a phosphodiester group.

Ether bonds and glycosidc bonds are not the same. Ether bonds are C-O-C. Glycosidic bonds are a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

Amide groups and peptide groups are not the same, either. Amide groups are CONH. Peptide groups are CONH between amino acid residues in a polypeptide chain. Nylon, for example, has amide groups (CONH) which aren’t called peptide groups.

Ether: C-O-C
Ester: COO
Amine: NH2
Amide: CONH

The molar mass of any amino acid without its Z-group is 74 gmol-1.

The molar mass of glucose, fructose and galactose (all monosaccharides) is 180 gmol-1. By coincidence, aspirin is also 180 gmol-1.

The molar mass of sucrose is 342 gmol-1 because (180*2)-18=342.

In general, energy is required to break bonds. Energy is released when bonds are formed.

Use the formula C-(H/2) to find how many C=C are present in a fatty acid (only works for fatty acids).

Use the shortcut formula (Ka/[acid])^0.5 to find % ionisation of a weak acid.

Use -log(Ka) to find the exact pH at the end point of an indicator.

Use the quick titration formula for rapid multi-choice titration questions: c1v1/ratio1 = c2v2/ratio2

A hydrogen bond is an intermolecular bond that forms between O-H groups. The covalent bond between the O and the H is not a hydrogen bond.

Can you write the half-equation for the reaction occurring at the anode in an ethanol-oxygen fuel cell with an alkaline electrolyte? Tip: start by writing the known reactants and products then use KOHES(OH) to balance your equation.

The products of a titration determine the pH at the equivalence point. For example, the the pH at the equivalence point in a titration between CH3COOH(aq) and NaOH(aq) is around 8.5 because at equivalence point, only products are present: Na+(aq) and CH3COO(aq). The ethanoate ion (CH3COO(aq)) is a weak base, which makes the solution produced slightly basic.

If you have absolutely no clue in the multiple choice sections, pick C. In the last 4 years of VCE Chemistry examinations, C has been correct 50% more of the time than B.

The multiple choice questions really do get harder towards the end. I’ve done the statistics.

Use your reading time wisely. During reading time, read all the questions with the following idea in mind: “how would I do this question?” without actually doing the question.

Bring sharp pencils.

Sleep early tonight (before 9pm). At this stage, getting enough sleep is far more important than revising those tiny details that may or may not come up in the examination.

All the best tomorrow.

Test Yourself Here on the Hardest VCE Chemistry Questions Ever Asked

VCE Chemistry Hardest Multiple Choice Questions Ever Asked Great Revision Tool
Click the image to begin Quiz 1

Great revision tools are available here. All the questions in these quizzes are real VCAA Chemistry questions extracted from Section A of past Chemistry papers.

Quiz 1

Quiz 2

Quiz 3 (long)

8-Page VCE Chemistry Formula Booklet Just $55

VCE Chemistry Formula Booklet INSIDE
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.

Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring.

There are 76 formulae in total, at least 10 of which are original. Orders are shipped on A3 paper, stapled along the spine and folded to an A4-sized booklet that resembles the VCAA Data Booklet.

Orders from schools, students and tutors are all welcome. Price includes free international delivery and 10% voucher for the T-shirt store.

Order your copy now by clicking here

VCE Chemistry Formula Booklet FRONT
Click to purchase a printed copy for just $55

Revise What’s HARD: Focus on Electrolysis

VCAA VCE Chemistry how difficult is each topic
Click to download PDF version. Numbers in parentheses denote Chapter numbers.

The VCE Chemistry examination is only 22 days away. As you complete at least one practice paper each day and correct them ccording to your revision timetable, you’ll be finding that you’ve already mastered certain topics while others remain difficult.

Patterns emerge in student readiness: each year, electrolysis is the worst-studied topic on the course. Because VCAA has a reputation for asking questions on topics that students repeatedly got wrong in previous years; I decided to test this hypothesis by getting real data from recent examination reports and displaying it on a scatterplot of:

  • how difficult each topic is (% of marks lost) on the x-axis
  • how often the topic is asked (marks per paper) on the y-axis

The results were fascinating. While it’s impossible to say with any certainty which topics will be on the examination this year, previous years’ examination papers have placed more emphasis on the difficult topics (electrolysis, Ka, redox and biofuels). Focus your revision on these topics again this year.

Conclusion: Focus your Chemistry revision this week on your least favourite topics… those topics will probably be worth more marks in the examination!

Chapter 25: Essential Calorimetry Formulae

Chapter 25 Essential Calorimetry Formulae VCE Chemistry
Click to download PDF version

Calorimetry can be a confusing topic. Avoid common errors by following these essential tips:

  1. Always label the units of E (kJ or J) above the E. This is the most common source of error in calorimetry calculations. Try this quick way to remember the required units of E: If there’s ΔH in the equation, the units are kJ; otherwise, the units are J.
  2. In E=mcΔT, all the variables refer to the mass of water being heated. A common error among students is to use the mass of limiting reactant instead of the mass of water. Generally, m in this equation is 100 g or a similar round number.
  3. Never convert ΔT to kelvin. Temperature changes are the same in kelvin and celcius… never add 273 when finding ΔT.
  4. No calibration step? Use m×c instead. Because E=mcΔT and E=CfΔT, it therefore follows that Cf ≡ m×c. For example, if we’re heating a 100.0 g of water without a Cf, we should use Cf = 100×4.18 = 418 J K-1 instead.
  5. In ΔH = E/n, n denotes the number of moles of limiting reactant. Never add up the number of moles of reactants: use the number of moles of limiting reagent only.
  6. Calculate twice. Students most often make mistakes when converting hours or days into seconds. Many answers are therefore wrong by a factor of 60. Do your calculations twice: once while doing the question and again when you check over your answers at the end of the SAC or examination.
  7. Know a ballpark figure. Neutralisation and solubility reactions tend to have 2-digit ΔH values; combustion reactions tend to have a 3-digit ΔH and explosive reactions tend to have a 4-digit  ΔH. If you get a 5-digit ΔH value, you’ve probably forgotten to convert your answer into kilojoules!
  8. Remember the ‘+’ or ‘-‘ sign! The calculator doesn’t know whether the answer should be positive or negative. Think about it yourself instead: endothermic reactions need a ‘+’ sign and exothermic need a ‘-‘ sign. VCAA awards a whole mark for getting the ‘+’ or ‘-‘ sign correct! It’s possibly the easiest mark in the whole paper.

Consider getting a home tutor who can answer your questions and explain difficult concepts to you. Students learn much faster with a tutor than on their own.

For more Study Tools for Year 12 students, click here.

Chapter 27/28: Six Universal Principles of Redox Reactions

Redox can be a confusing topic for VCE Chemistry students. It’s also taught right at the end of the year, when students are tired and some teachers are rushing their lessons so they can finish the course before the end of Term 3. Student motivation levels are at their lowest time of the year, which means that students often finish the course with an incomplete understanding of Redox.

Fortunately, there are six universal principles that are always true in Redox no matter what type of cell is being studied.

First, here’s a reminder of the types of cells you need to have studied in this course.

Galvanic Cells

  • Primary (can’t be recharged)
  • Secondary (can be recharged)
  • Fuel Cells (reactants are supplied continuously)

Electrolytic Cells

  • Electroplating Cells (no overall reaction)
  • Electrolytic Cells (non-spontaneous reaction)
  • Commercial Cells (usually molten electrolytes)
  • Recharge reaction of a secondary cell (non-spontaneous)

Now, here are the six universal Redox principles.

1. The strongest oxidant at the cathode reacts with the strongest reductant at the anode (SOC SRA)

To predict which species will react with each other, circle all the species present at the cathode on the electrochemical series. The highest species on the left will always react. Now, circle all the species present at the anode… the lowest species on the right will react.

2. The half-reaction with the highest E° value is always positive

In all cells, the half-equation with the highest electrode potential (also called ‘reduction potential’ or E° value) always occurs at the positive electrode. Similarly, the half-equation with the lowest electrode potential (E°) will always occurs at the negative electrode.


Oxidation is loss of electrons. Reduction is gain of electrons.


Anode reaction (oxidation reaction) is whichever reaction is happening to the left in the electrochemical series.

Cathode reaction (reduction reaction) is whichever reaction is happening to the right in the electrochemical series.

5. Electrons always flow in this order (RACO)

Reductant → anode → cathode → oxidant

6. In the internal circuit, cations always flow to the cathode, and anions always flow to the anode.

The internal circuit might be an electrolyte or a salt bridge that contains soluble weak oxidants and reductants such as KNO3(aq) (potassium nitrate). Either way:

  • cations always flow to the cathode; and
  • anions always flow to the anode.

Keep practicing redox questions by completing past papers, Checkpoints and Lisachem questions. If you need more help, contact me via the Get a Tutor button in the site’s menu bar. Students learn much faster with a tutor than on their own.

For more Study Tools for Year 12 students, click here.

Image courtesy of Annenberg Learner

What do I need to know for the Chemistry Exam?

VCE Chemistry Marks Allocated by Chapter 2013 2014 combined data chart
Click to download PDF version

We all remember the endless ‘cells’ questions at the end of the 2014 Chemistry exam. Less memorable was that the 2013 examination awarded a similar number of marks for ‘cells’ knowledge. Exams that test knowledge of these last two chapters in the course (Galvanic Cells and Electrolytic Cells) separate good students from great students because these topics are taught at the end of the course when students are getting tired and teachers are rushing to finish the course before trial examinations and the Term 3 holidays. Only the most diligent students go out of their way to get a complete understanding of these topics at this stage in the year – and they’re the ones who benefit from this type of exam.

Interestingly, in 2013 and 2014, 33% of the marks in the VCE Chemistry examination were awarded for knowledge of just four of the textbook’s 28 chapters. Therefore, if you’re short of time, focus your efforts on these four chapters (28, 27, 16 and 12) before working on the rest.

“Based on past examinations, students should focus their revision on Electrolysis (28), Galvanic Cells (27), Equilibrium (16) and Biomolecules (12) before working on the rest…”

While the structure of past examinations provide no guarantees about future examinations, it’s still reasonable to expect that the top 5 subjects will remain mostly the same in 2015 as in previous years.

Correlation of the total number of marks awarded per chapter is moderate with R² = 0.48 for 2013 and 2014.

Consider getting a home tutor who can answer your questions and explain difficult concepts to you. Students learn much faster with a tutor than on their own.

For more Study Tools for Year 12 students, click here.

Free VCE Chemistry Progress Tracker Wall Chart

Chemistry LADDER progress chart for VCE students
Click to download PDF version (A3 size)

Track your progress in VCE Chemistry with this A3 size progress tracker. Cross out or colour in each box as you complete it, and write your scores in . Start at the bottom (highlighted) and work your way upwards.

A ‘minimum expected level of examination preparation’ of 26 examination papers is labelled on the chart. Write your percentage scores in each of the boxes as you mark each paper. When you’re achieving past/practice examination scores concordantly above 90%, you’re ready to sit the VCE Chemistry examination.

For more Study Tools for Year 12 students, click here.

How they did it: Tips from 99.95 students

Tips from Izabella Bratek at

1. Develop excellent study skills. Cultivate ideal study habits such as waking up early, reading your notes before school, doing all homework on time and studying even when there’s no homework set.

2. Stay committed and know what you want and WHY. People who know why they do what they do are far more likely to persist and put in the huge number of hours required to excel at that particular skill. All successful people were driven by a higher. Find your why and you’ll feel more motivated to study VCE.

3. Keep motivation levels high and consistent throughout the year. Remind yourself constantly why you’re studying the VCE subjcets you’ve chosen.

4. Do not “over-indulge” in VCE tutoring. Your tutors and teachers can only take you so far. The highest-achieving students are those who are self-motivated: they push themselves and study even when nobody asked them to. Become self-motivated and use your tutoring time wisely to maximise your performance in VCE exams.

Tips from Alastair Weng at

1. Maintain good study habits. Get more information on study habits here.

2. Keep a balanced life. Stay healthy by socialising and exercising regularly. Don’t sacrifice health for your ATAR: a healthy body helps maintain a healthy mind.

3. No regrets. Remember that the sacrifices you make today will pay off in the future.

Tips from Akhil on the forum

1. Stay a whole module ahead.

2. There are two things you need to do: make great notes and do practice questions. 

3. Build on your notes from external sources (other people’s notes and the textbook)

4. Mark your questions – or get them marked! Akhil says that while it’s an excellent learning exercise to practice marking questions by yourself, it’s also necessary to get your practice papers and Checkpoints questions marked by a teacher or tutor because they’ll be more vigilant with sticking to the marking scheme and can pick up slight errors in wording that are easy to miss if you mark your own work.

Want more? Try How to Get Ahead in VCE Chemistry

Do you know of any more study tips? Are there any crucial tips missing from this list? Post them into the comments section below.

Bilingual Chemistry Classroom Posters

English-Chinese Chemistry Posters Classroom Set. Click to download editable Word document version.
Click to download editable Word document version

Decorate your Chemistry classroom with these 40 free bilingual Chemistry posters.

Topics include:

  • lab equipment;
  • redox;
  • ions;
  • organic nomenclature; and
  • molecular geometry.

Feel free to edit or share them.

Also… Get the famous ‘all-natural banana’ poster prints here.

Poster Selection 3

Remember to check out our T-Shirt Store with T-shirts in 7 languages!

Visit the T-Shirt Store for Chemistry T-Shirts Made in Australia in 7 Languages. Buy online.

Get your My First Physics Alphabet poster set here, in both Pink and Blue editions

My Physics Alphabet Poster Set of 4 in BLUE
My Physics Alphabet Poster Set of 4 in PINK

For more posters and free infographics, visit the Posters section of the site here.

Chemistry Task Words

Chemistry VCE task words verbs for Chemistry education and instruction
Click for a PDF version of these task words

RTQ! This is one of the most common sources of errors in Chemistry examinations. When I sat 2014’s VCE Chemistry examination, I lost 5 marks in the paper for not reading the question! Your teachers will have told you to ‘read the question’ or ‘RTQ’ as well.

Task word errors can be avoided in two ways. First, learn the exact meanings of each task word. This is particularly important for EAL Chemistry students. Second, highlight the task words in a question (just as you would highlight the important information in a complicated titration question).

For example: “Explain how the different intermolecular forces in butane and butan-1-ol give these two compounds different boiling points. 3 marks

In your answer, you will need to explain the effect of intermolecular forces. This means you’ll need to write why the butan-1-ol forms hydrogen bonds (due to the polar nature of the hydroxyl group) whereas butane forms only dispersion forces with its surrounding molecules (due to the non-polar nature of the molecule). You’ll also need to make some kind of comparison (which is hinted at by the word, ‘different’) in order to get all 3 marks.

Example 3-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule. Hydrogen bonds are stronger than dispersion forces and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.

One mark would be awarded for each of:

  • Explaining the intermolecular bonding of butan-1-ol
  • Explaining the intermolecular bonding of butane
  • Comparing the relative strengths of the two and relating this to boiling points

In a 2-mark answer, the student might omit the comparison step:

Example 2-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule.”

In a 1-mark answer, the student might only mention one of the two molecules, or might only make a comparison without explaining why these two compounds display different types of intermolecular forces.

Example 1-mark answer: “Hydrogen bonds formed by butan-1-ol are stronger than dispersion forces formed by butane and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.

In that latter example, the student didn’t explain the reasons for the differences in intermolecular bonding – they merely stated them.

Task word Chinese Description
Calculate 计算 Write the value of a number (include equations)
Compare 比较 Write the similarities and differences between
Evaluate 评价 Write arguments for and against
Define 确定 Write the exact meaning of
Describe 描述 Write details about (a thing or a process)
Discuss 讨论 Write reasons for and against
Distinguish 区分 Write the differences between two or more things
Explain 讲解 Write details to give the reader an understanding of
Find/State Write (sometimes by doing calculations)
Identify 鉴定 Write which one
Illustrate 说明 Write something and draw a labelled diagram as well
Indicate 表明 Write which one (usually on a given diagram)
List 列出 Write a list
Outline 轮廓 Write a summary
Suggest 建议 Write a reason for a phenomenon
To what extent 到什么程度 Write whether a reaction is complete (→) or incomplete (↔).

Watch task words in the examination… and make sure you answer the question!

3 Things You Take With You from Year 12

1) Friendships

Memories and connections are some of the most valuable things you’ll take with you from Year 12. Keep in touch with as many people as possible both officially (using alumni networks) and unofficially (using social media). People move in different directions after graduation and you’ll be surprised at how your friendships evolve, too: classmates who were mere acquaintances during school might become very close friends in five years’ time. Keep in touch with all your classmates to make sure you don’t miss out on these future business connections, too. You might even meet again one day sitting opposite each other at a job interview!


Remember that your ATAR is only a means to a much more meaningful goal: it’s the key to a university course of your choice. Strive for an ATAR that’s high enough: there’s no need to stess yourself out by aiming for a ‘perfect’ score of 99.95. Your ATAR is like a disposable key: it gets you into university but doesn’t help you while you’re there. Nobody asked me what my A-level results were throughout my undergraduate years at Cambridge. High-school results simply weren’t important.

3) A Relentless Work Ethic

You’ve worked harder in Year 12 than you’ve ever worked in your life. If you want to be successful, you’ll have to maintain this level of hard work – or even increase it – to accomplish your goals in life. You’ve learned the difficult way that in Year 12, going to school and doing all the required homework isn’t enough. You’ve figured out in Year 12 that you have to spend hours reading the textbook by yourself, doing practice question sets that aren’t on the course, and making summary notes that your teacher will probably never see in order to get a high grade.

The relentless work ethic you’ve garnered will help you to conquer bigger obstacles in the years that follow. Give every major event in your life at least as much passion, dedication and preparation that you gave to your VCE examinations and you’ll be sufficiently prepared for the challenges that await you in the future. VCE is pre-season training for life.

Is there anything I’ve missed from this list? Is an ATAR more than just a “key to a university course”? Let us know in the comments section below.

Australia’s Future is in STEM

A recent report by PriceWaterhouseCooper predicted that 44% (5.1 million) of the jobs that exist in Australia today are at risk of ‘digital disruption’ by 2035. PwC predicts that computerisation and technology will not only create new jobs in the next 20 years but will ultimately supersede much of the existing workforce as well.

In order to realise our full potential, Australia needs an appropriately skilled workforce; a workforce fit for the future. PwC has concluded that expanding our STEM industries (Science, Technology, Engineering and Mathematics) would maximise economic outcomes for Australia in the next few decades.

The Australian economy has benefited greatly from economic reforms and from increasing demand for natural resources, mostly from China, which drove most of Australia’s growth in the early 2000s. At the same time, the PwC report says, economic growth from productivity has halved and Australia needs to develop a strong STEM foundation to guarantee economic growth after the current commodity boom has finished.

Download the full PDF report from PwC here.

Jobs most at risk from computerisation by 2035

STEM jobs being automated PwC 2015
Accountants and cashiers are most likely to become automated

Jobs least at risk of automation by 2035

STEM jobs not being automated PwC 2015
Health, education, advertising and IT are least likely to become automated

While it’s important to choose a future-proof career in one of the fields above, the benefits of doing so extend far beyond the individual level. PwC has predicted that Australia could gain a $57 billion economic boost between 2015 and 2035 if it switched just 1% of its workforce into STEM occupations. Australia’s prosperity in the next few decades appears to be highly dependent on our nation’s commitment to STEM.

Conclusion: schools and STEM businesses need to do more outreach

“Business also has the opportunity to better connect with students. This can be done by profiling emerging STEM careers, talking about workforce needs, offering workforce and internship experiences and breaking down the stereotypes and barriers that still remain today. It’s not new, but scope exists for a much more coordinated approach to engaging with the potential STEM workforce.”

Download the full PDF report from PwC here.