Tag Archives: chemistry

“Organic” is a farming practice…

 

I started a YouTube channel called Sincerely, Chemicals. It’s inspired by the workshops I’ve been running since 2017 so you can now review the content at home.

Video 2 is below. It’s called “Are Organic Products Safer?”… you already know the answer, but play the 2-minute video to find out why.

If you like these videos, please leave a comment, like and subscribe. That way, I might be encouraged to make more 🙂

P.S. I hope you like the cartoons!

Fighting Chemophobia is now available on Amazon worldwide

fighting chemophobia print run 3 cover
Third edition of Fighting Chemophobia is now available on Amazon.com and Kindle Store

After several hurdles, I’m happy to announce that Fighting Chemophobia is now available on Amazon in both paperback and Kindle editions for international delivery. Amazon.com and three other independent online book vendors have signed up to stock Fighting Chemophobia.

Buy your copy by clicking the links below – or search Amazon.com or your Kindle device for Fighting Chemophobia to download the book.

Signed copies are of this new third edition are of course still available via this website. Click the PayPal link below to order your signed copy.

I’ve been working on some exciting things in the last few months. Watch this space for teasers.

Fighting Chemophobia is now available in the Kindle store!Fighting Chemophobia buy chemistry book

Natural pesticides in a cabbage


natural pesticides in cabbage

There exists a myth that organic fruits and vegetables are healthier because they’re free from harmful pesticides. Bruce Ames, one of the key founders of the field of toxicology back in the 1970s, wrote a landmark paper in 1990 called Dietary pesticides (99.99% all natural), in which, he showcased some of the many naturally-occurring pesticides we ingest every day.

Because plants can’t run away, they attack predators with chemical weapons instead. All plants produce natural pesticides called secondary metabolites that deter predators to varying extents. The production of these secondary metabolites is upregulated during predatory attack.

Some of the natural pesticides that plants produce are toxic. Some are carcinogenic. Some studies have even suggested that if synthetic pesticides are not sprayed onto the surface of the crops, as might be the case in some types of organic farming, plants increase their production of natural pesticides to compensate for the resulting increase in herbivory attack.

Proponents of organic food fail to realise that everything we touch, eat and breathe contains miniscule traces of toxins. Our bodies evolved in a pretty dirty environment and can cope with low levels of toxins being ingested. Some studies even suggest that ingesting these tiny amounts of harmful substances might not only be harmless but beneficial to our health.

Contrary to popular belief, natural foods (wild varieties) are not safer, more nutritious nor more delicious than conventionally-farmed foods. Organic farming is an unsustainable luxury that offers no benefit to consumers’ health.

For more information on organic food, check out my latest book, Fighting Chemophobia, which is available by clicking the link below.


Fighting Chemophobia is now available in the Kindle store!
Fighting Chemophobia buy chemistry book

It’s been a while since I posted. I’ve been working on some things that will be revealed in the next few months.

Second batch of Fighting Chemophobia is printed in Qingdao, China.

 

The second batch of Fighting Chemophobia books are finished! After a long search, we have finally found two great companies for printing and distribution in China. Dianzan design and printing company has laid the book out with great care and precision and turned Fighting Chemophobia into an excellent-quality product in both hardback and paperback editions. The 80 gsm Dowling paper feels great, and there are even some full-page colour images scattered throughout the book. Shunfeng Express is handling cheap, quick shipping and is currently achieving 2-day deliveries within China. They predict  7-day delivery times internationally.

This second batch is higher quality than the first. I’m sure you’ll love what these people have produced.

Working with a publisher could have saved me the search for an editor, a printer, a distributor, a marketer and a translator. Self-publishing has been more rewarding in this regard: not only have I selected the people I’ve worked with to bring this book to completion but I’ve probably learned more this way about the process of writing, editing, printing, binding, marketing and distributing a book than if a publisher had handled the entire process on my behalf.

You can buy your signed copy of the second batch of Fighting Chemophobia using the PayPal link below. Click subscribe on this page to receive future (approximately fortnightly) email updates.

Fighting Chemophobia pay now button

Aniline Yellow (1861)

yellow powder

Unlike purple and pink pigments, which were rare and expensive enough to be reserved for royalty and high-ranking clergy, yellow pigments were abundant throughout ancient history. Yellow ochre, a powdery mixture of iron oxides, has been used in cave paintings around the world for up to 80,000 years and was still being used by artists in the early nineteenth century. Saffron and turmeric were also used as yellow dyes throughout ancient history. Vincent van Gogh was using mineral yellow pigments such as cadmium yellow and chrome yellow in his mid-nineteenth century paintings. By the mid-nineteenth century, people looking for yellow pigments already had plenty of options. Despite there being no pressure from consumers for a new yellow dye, chemists trying to replicate the fame and fortune that mauveine brought to William Perkin in 1856 were experimenting eagerly in pursuit of that goal.

In 1861, Mêne was reacting aniline with cold nitrous acid to produce a diazonium salt solution. He then added more aniline to the resulting salt solution and shook the flask vigorously and noticed a yellow precipitate formed at the bottom of the flask, which would later become known as ‘aniline yellow’ – the first ‘azo dye’. [1]

The reaction mixture must be kept cool (at around 5 °C) because different temperatures cause different products to form. If the same reactants are mixed warm, then smelly liquid phenol and inert nitrogen gas are formed, both of which are colourless, and neither of which are useful as pigments!

At the time, the ‘aniline yellow’ powder he discovered was considered useless because it didn’t dissolve in water. However, it did dissolve very well in oil. The dye eventually gained some niche uses as a microscopy stain (like fuchsine) but was never utilised by the garment or pigment industry.

After staying relatively unused for over a hundred years, aniline yellow left an unfortunate legacy for itself by becoming the culprit molecule in the Spanish ‘Toxic Oil scandal’ of 1981. A batch of Spanish rapeseed oil had been denatured (deliberately adulterated) with 2% aniline yellow so the company could report it as “machine oil” and take advantage of certain tax breaks. One local refinery obtained the denatured rapeseed oil and attempted to remove the aniline yellow dye so they could sell it on as “pure olive oil” on the market for profit. They sold the oil around much of north-western Spain in unlabelled 5-litre plastic containers.

yellow powder OO PAP map

The first casualty was an eight-year-old boy who died upon arrival at a hospital in Madrid on May 1st, 1981. The rest of his family then presented with an unusual set of symptoms: headache, fever, itchy scalp, lethargy and interstitial lung disease. The hospital diagnosed the family with “atypical pneumonia” and treated them all with antibiotics but they showed little improvement. [2]

Across Spain, 20,000 patients presented with similar symptoms within one month of the incident. Thinking that an unexplained pneumonia outbreak was unfolding, a children’s hospital in Madrid conducted a randomised, double-blind controlled clinical trial on the effectiveness of the antibiotic erythromycin, which is particularly effective on infections of the respiratory system. [3] Unfortunately, they found no difference in recovery or mortality rates between the treated group and the control group and decided to keep looking for potential treatments.

Attempting all avenues, the researchers conducted lifestyle surveys on many patients, which included (among many other things) questions about cooking oil. Sadly, even though the source of the problem was staring them in the face, the results of the oil usage survey questions came back “inconclusive”. [4]

A baby ultimately solved the puzzle. Prognosis for young children was generally worse than for adults after they contracted the strange set of symptoms. Oddly, babies under six months were unaffected even if the entire rest of the family had presented with the pneumonia-like symptoms. Their infants were completely symptom-free. When one baby did get sick, however, this prompted deep and urgent questioning of the parents involved to find out what they did differently from others. One unusual aspect of the baby’s upbringing was that the baby’s grandmother had been ‘supplementing’ baby’s formula powder with cooking oil that was sold in an unlabelled 5-litre plastic container. [5]

Spanish government agencies acted quickly. The Ministry of Health and Consumer Affairs issued a recall of all oil sold in unlabelled plastic bottles within 40 days of the first casualty reporting with symptoms (the 8-year-old boy). Rates of patients presenting with symptoms of Toxic Oil Syndrome, as it would later be called, plummeted after the recall was announced on June 10th, 1981.

OO PAP epidemic graph

The aniline yellow had all been removed. The problem was a side-reaction, completely unknown to the scientists who were purifying the “machine oil”, that formed a new, harmful molecule that was large enough to escape their detection methods.

OO PAP molecule Aniline Yellow plus oil
The culprit: OO PAP molecules

The molecule responsible for Toxic Oil Syndrome is called “OO PAP” in scientific literature. Visual inspection of OO PAP’s structure reveals that it’s quite simply an olive oil triglyceride molecule (triolein) with one of its three fatty acid tails replaced with a large aniline group. [6] When the rapeseed oil was adulterated with 2% aniline yellow to disguise it as “machine oil”, some of the aniline yellow molecules didn’t just blend in with the oil but reacted chemically with it to make OO PAP molecules. ITH, the company who sold the de-adulterated product as “pure olive oil”, was likely unaware of this chemical reaction, and therefore (we assume) also unaware of the poisonous OO PAP that had formed in the oil. While ITH successfully removed the aniline yellow, they failed to remove the OO PAP molecules, which escaped their filtration techniques. [3] Sadly, hundreds of people died and 20,000 more were made ill from OO PAP poisoning, and financial damage was estimated by El País newspaper to be 2 billion pesetas (around 16 million US dollars today). [7] Just like the scandal of the pink fuchsine socks, government and industry were forced to work together to respond quickly to a growing public crisis.

Every chemical – regardless of whether it’s found naturally or created synthetically – has the potential to be beneficial, harmful or harmless depending on the dosage and the way that it’s used. Aniline yellow, like all other chemicals, is incredibly useful when used correctly. It’s a fantastic microscopy stain but totally unsuitable for culinary use.

Today, people use aniline yellow to dye specimens for viewing under a light microscope. Aniline yellow’s dangers are stated clearly on its safety data sheets: handling it today requires training, permits, safety glasses, gloves and a lab coat to avoid all contact with skin and eyes. Now that chemistry has given us a better understanding of the aniline yellow, nobody dare use it to dye foodstuffs. [8]

References

[1] http://www.chemguide.co.uk/organicprops/aniline/makediazo.html

[2] Paz, Manuel Posada de la. 2001. “Toxic Oil Syndrome: The Perspective after 20 Years.” Epidemiologic Reviews 231-247.

[3] Gelpí, Emilio. 2002. “The Spanish Toxic Oil Syndrome 20 Years after Its Onset: A Multidisciplinary Review of Scientific Knowledge.” Environmental Health Perspectives 457-464.

[4] Flores, Juan Casado. 1982. “Sindrome Toxico en Niños por Consumo de Aceites Vegetales: Modelo Clinico de la Enfermedad, en la Fase Aguda.” Pediatrika 22-26.

[5] Flores, Juan Casado. 1982. “Síndrome toxico por consumo de aceite adulterado. Una encuesta alimentaria esclarecedora.” Pediatrika 17-20.

[6] Paz, Posada de la. 1999. “Epidemiologic evidence for a new class of compounds associated with toxic oil syndrome.” Epidemiology 130-134.

[7] El País. 1981. “2.000 millones de pesetas costará al Insalud la asistencia a los enfermos a causa del aceite.” El País 15.

[8] Southern Biological. 2009. “Material Safety Data Sheet: Fuchsine.” Southern Biological. 08. Accessed 12 19, 2016. http://file.southernbiological.com/Assets/Products/Chemicals/Stains_and_Indicators-Powders/SIP4_6-Basic_Fuchsin/SIP4_6_MSDS_2009_Basic_Fuchsin.pdf.

The ‘deficit model’ only works half the time when you’re fighting chemophobia

focus group sitting at a table chemicals

The “deficit model” is a widely criticized theory that suggests that people who harbor attitudes of negativity or indifference towards science (in this case, chemistry) do so because they are uninformed about the topic (Chinese: 无知).

People’s misinformation might come from a lack of interest, a lack of exposure or an experience of poor science outreach in the past, where incorrect messages were delivered.

The “deficit model” stipulates that if people knew more about science, they’d naturally become more interested in it. Unfortunately, it doesn’t always seem to work, and the ‘model’ is subjected to routine criticism.

Criticisms of the “deficit model”

  • It is patronizing to the public, which alienates them further from science
  • It implies that there is only one coherent, correct narrative of ‘science’
  • It implies that people who don’t like science are misinformed about it
  • Learning science isn’t always fun
  • Being forced to learn something they’re not interested in could reinforce negative attitudes towards science
  • The public is too varied to attempt to give a “one size fits all” theory of science outreach
  • It ignores the fact that members of the public have individual preconceived ideas about science before they’re introduced to new science information
  • It relies too much on monologue/lecturing the public rather than engaging them in dialogues

Employ alternatives to the “deficit model”

Critics of the “deficit model” tend to advocate solutions that involve dialogue (rather than monologue) with the public. Dialogue works better when the particular public audience in question has pre-existing views about the scientific topic being discussed (called ‘affected/partisan’ public groups).

There are four main types of ‘public’ audiences. The table below summarizes each of these types and how to engage with them, and is adapted from Canek Phillips report from 2013.

table 1 mechanisms of deficit model
Table 1 from Phillips & Beddoes (2013). Click to download.
The general public consists of people with diverse views that represent a cross-section of society. In a group, these views cancel out somewhat, hiding the deviation of views. The “deficit model” of monologue delivery is an effective way to engage such a group.

The pure public is a group of people who have no pre-existing ideas about the topic being discussed. The “deficit model” can engage these audiences as well.

The affected public can only be engaged if their pre-existing views are acknowledged and respected beforehand. Dialogue is an excellent way of doing this. Examples of dialogue-based approaches include science shops, public hearings, citizen judies, stakeholder consultations and focus groups.

The partisan public is sometimes led by charismatic leaders or lobby groups. Their views might have been shaped by influential figures (e.g. Mercola, Food Babe) and the pre-existing views (misconceptions) delivered in this way need to be debunked through respectful dialogue rather than monologue.

In short, before telling your audience something, find out whether they have any pre-existing ideas about that topic. If they don’t, then go ahead with a monologue delivery. If they do, then launch a two-way discussion with them, in which you listen and respect their views. Only then, will they respect your opinion as well. ♦

全天然香蕉也是来自化学

2013年底,我准备高中有机化学课的时候设计下面的全天然香蕉成份信息图形。

e585a8e5a4a9e784b6e9a699e89589e68890e58886-1.png

这几年,广告上写的三个关键词有全天然」、有机」、无化学成份」。我想通过这张信息图形告诉大家一切都是化学成份做出来的。大自然生产的化学成份比科学家在实验室里能合成的成份复杂多了。为了简洁我写了几十个组成香蕉的重要成份——还有几千个天然有机化学成份没写上。

全天然香蕉里面有一些成份是有毒性的。但是,因为香蕉里面的剂量极少,所以它们对我们的人体是无害的。大自然对剂量的掌握是非常精准的,自然界中,所有的化学成分都有完美的剂量。这个信息图形的意义是告诉大家:

  1. 世界上的一切都是来自化学
  2. 大自然生产的化学成份比合成成份还复杂多了
  3. 大自然生产的产品(如香蕉)并不纯净,因为有上万种成份在其中
  4. 讲毒理学不讲剂量是完全没有道理的

随心分享!

Combatting Chemophobia With Wine

Ava Winery composes fine vintage wines molecule by molecule in the lab
Ava Winery composes fine vintage wines molecule by molecule in the lab

The wines your great-grandchildren might one day drink on Mars will soon be coming to a bottle near you. Ava Winery is a San Francisco-based startup creating wines molecule by molecule, without the need for grapes or fermentation. With complete control over the chemical profile of the product, Ava’s wines can be created safely, sustainably, and affordably, joining the food technology revolution in creating the foods of the future.

galaxy-class_replicator
Ava Wines’ business model is somewhat akin to the Star Trek replicator!

For Ava, foods in the future will be scanned and printed as easily as photographs today. These digital recreations will be more than mere projections; they will be true chemical copies of the originals, capturing the same nutritional profiles, flavors, and textures of their “natural” counterparts. Our canvas will be macronutrients like starches and proteins; our pixels will be flavor molecules. Future generations won’t distinguish “natural” from “synthetic” because both will simply be considered food.

Consider ethyl hexanoate, although scary-sounding it is the very chemical that gives pineapples their characteristic smell and also fruity wines a tropical note. From pineapples, or indeed other organisms, ethyl hexanoate can be extracted much more efficiently. By sourcing more efficient producers of each of hundreds of different components, wines can be recreated as their originals.

Future generations won’t distinguish “natural” from “synthetic” because both will simply be considered food.

In fact, by eliminating the variability of natural systems as well as potential environmental contamination, this digitized future of food can increase the safety, consistency, and nutritional profile of foods. Such food products can reduce overall land and resource use and be less susceptible to climate fluctuations. Indeed this future will see significant reductions in the costs of food production as the cost of the raw ingredients shifts to more efficient sources of each molecule.

Processed with VSCO with s3 preset
100 to 300 compounds are responsible for the full flavour of a wine.

So why wine?

We knew there would be a controversial love/hate relationship with our mission to build wine molecule by molecule. To the elite who value the high-end wine experience, our molecularly identical creation of the $10,000+ bottle of 1973 Chateau Montelena will be a mockery; but to the public, the $10,000 turned $20 bottle will be a sensation. To the purists who still believe organic is the only way to eat or drink healthily, our wine will get “some knickers in knots”; but to the nonconformists, our wine will be a contemporary luxury made by contemporary technology.

In short, wine is just the beginning. Soon, Ava hopes to build more food products molecule by molecule further blurring these lines between natural vs. synthetic while simultaneously making luxury items available for all. With our groundwork, the Star Trek future of food might be closer than we thought.

Friluftsliv: Norway’s search for true nature

There’s an interesting psychological quirk that makes us yearn for a benevolent, caring Mother Nature that can cure our ailments without any side effects. Academics call it the “naturalness preference” or “biophilia”, and the Norwegians call it “friluftsliv” (literally: free-air-life).

Friluftsliv began in 18th century Scandanavia as part of a romantic “back-to-nature” movement for the upper classes. Urbanisation and industrialisation in the 19th century disconnected Norwegians from a natural landscape to which they’d been so interconnected for over five thousand years.

Norway’s sparse population, vast landscapes and midnight sun (in the summer months, at least) make it an excellent place for hunting and exploration. These ideal conditoins produced some of the greatest trekkers and hikers the world has ever seen. I’ll show you two heart-warming examples.

The first is Norway’s infamous explorer Fritjof Nansen, who (very nearly) reached the north pole in 1896 as part of a three-year expedition by ship, dog-sled and foot. When world war one broke out, Nansen put his trekking knowledge into practice by helping European civilians escape the perils of war and move to safer places. He facilitated several logistical operations in the early 20th century that saw the movements of millions of civilians across Europe. When famine broke out in Russia in 1921, he arranged the transportation of enough food to save 22 million people from starvation in Russia’s remotest regions. Deservedly, he was awarded the Nobel Peace Prize in 1922 for his efforts.

The second example is Norway’s Roald Amundsen, who was the first person to reach the south pole in 1911. Nansen lent his ship, Fram, to Amundsen for a north pole expedition in 1909. Before Amundsen set sail, however, he learned that two rival American explorers – each accompanied by groups of native Inuit men – had already reached the north pole and were disputing the title of “first discoverer” among themselves. When Amundsen finally did set sail, he took Nansen’s Fram vessel to Antarctica instead, where he and his team disembarked and trekked a successful round-trip to the south pole. While Amundsen admits he was inspired by Nansen’s successful polar expeditions, I’m sure that Norway’s vast landscapes, summer sun and long-standing tradition of “Allemansrätten” (the right to traverse other people’s private land) also contributed to Amundsen’s yearning for friluftsliv: the obsessive search for a truly untouched wilderness. (Amundsen 1927)

The world’s first tourist organisations were founded in Norway (1868), Sweden (1885) with the goal of helping Scandinavian elites in their search for true nature. When the Industrial Revolution brought many indoor, sedentary factory jobs to Scandinavia, workers craved the outdoors that their culture had been in harmony with for thousands of years. Elites in the late 19th century signed up to go on expeditions to escape encroaching urbanisation. Later, in 1892, a group of Swedish soldiers founded the non-profit organisation Friluftsfrämjandet, which provided outdoor recreational activities to the labouring classes with a particular emphasis on giving free skiing lessons to children. Thanks to Friluftsfrämjandet, and the working-time legislations that came into play in the early 20th century, the middle and lower classes were finally able to pursue their obsession with finding nature, or friluftsliv.

“…[W]e arrange activities to win great experiences, together. We hike, bike, walk, climb, paddle, ski and skate together. We train the best outdoor guides and instructors in Sweden. And we have fun together!” (Friluftsfrämjandet 2017)

Hans Gelter, Associate Professor at Luleå University of Technology, writes that even friluftsliv has become commodified in the age of consumerism. He claims that the high prices commanded for outdoor equipment and transportation to remote places act as a barrier between hikers and the nature they claim to be seeking. (Gelter 2000) In Deep Ecology: Living as if Nature Mattered (1985), Timothy Luke argues that outdoor pursuits are now more about testing fancy equipment than finding a deep connection with Mother Nature. Snowboarding is now more about testing the latest boards and wearing eye-catching outfits than it is about enjoying pristine mountain vistas. Golf is now as much about donning luxury clothing brands and using expensive golf clubs as it is about enjoying the outdoors. Even many shower gels and body washes now contain a drop of lemon essence or avocado oil – for which you pay an extra dollar – that adds nothing to the utility of the product. We do this because we crave nature in an industrialised world.

My book Fighting Chemophobia (coming at the end of 2017) is approaching 60,000 words in length. Copious reading and lively discussions with many colleagues and academics is helping to shape the stories in the book.

Follow me on twitter to stay up-to-date with the book’s progress.

Fighting Chemophobia

Bananas contain unpronounceable ingredients, too. Ingredients of an All-Natural Banana by James Kennedy

It’s been exactly three years since I uploaded the original banana poster.

In 2014, I soon followed up with podcasts, radio appearances, press interviews, a T-shirt Store and twelve more fruit ingredient labels. I’ve done six more customised fruit ingredients labels for private clients. The images have since appeared in textbooks, corporate promotional material, YouTube videos, T-shirts, mugs and aprons.

Momentum built in 2015. Parodies emerged online, and a copycat image appeared in one Chemistry textbook. I started writing about chemophobia and consulting with experts on how to address the issue. In short, it’s very, very complicated, and has deep evolutionary origins. I set a goal to understand chemophobia and provide a roadmap to tackle it effectively.

In 2016, my voluminous OneNote scribblings turned into a book. I have a first draft saved on OneDrive (thank you for keeping it safe, Microsoft) and I’ll be proofreading it on an long-haul intercontinental flight for you later today.

My next book, tentatively titled “Fighting Chemophobia”, will be published in late 2017.

I promise that my book “Fighting Chemophobia” will contain the following:

  • Stories you can share on a first date;
  • Maths – but just a little;
  • Chemistry – but not too much;
  • A deep exploration of chemophobia’s roots;
  • Tangible solutions to chemophobia;
  • More stories. Lots of true stories.

This “Fighting Chemophobia” book is for:

  • Educated people who are interested in a fascinating, growing social phenomenon;
  • People who want to settle the ‘natural’ vs ‘artificial’ debate;
  • Chemistry people;
  • People who love reading.

To get your hands on a copy, subscribe to this blog for email updates. Just click ‘Follow’ somewhere on this page (its location depends on which device you’re using).

I promise that throughout 2017, you’ll receive teasers, snippets and discarded book fragments via this blog to get you excited.

Get your Future-Proof VCE Chemistry Formula Book for just $55

James Kennedy's VCE Chemistry Formula Book 2017-2021Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring around Melbourne.

There are 76 formulae on 8 pages. At least 10 of these formulae aren’t in the three main chemistry textbooks. Orders are shipped in A4-sized booklet that resembles the VCAA Data Booklet.

Orders from schools, students and tutors are all welcome. Price includes free international delivery and a 10% voucher for the T-shirt store.

Order your copy now by clicking here

Learn from the best

James Kennedy achieved outstanding A-level results in 2006 in Maths, Chemistry, Physics and Biology. Those excellent grades (which equate to an ATAR of 99+) earned him a BA (Hons) degree and a Masters degree in Natural Sciences from the University of Cambridge.

Shortcut formulae were just one of the techniques James used to pass his A-level exams and get into Cambridge. Along with structured revision, revision guides, practice papers and study notes on wall-cards, James used shortcut formulae to save precious time in the examination hall. You can get your own copy of these original shortcut formulae – revised and updated for the 2017-2021 VCE Chemistry course – for just $55 including free international shipping. Click here to get your copy.

Here’s an preview of the inside

VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.

Click here to purchase your 8-page companion book with 76 formulae relevant for VCE Chemistry Units 1-4

Let’s add oxygen, fluorine and neon gases

Oxygen from Theodore Gray's amazing book, The Elements
Oxygen from Theodore Gray’s amazing book, The Elements

This post concludes the Periodic Table Smoothie experiment.

Recall that we’ve just finished adding one mole of nitrogen gas and created a bizarre boron polymer at the bottom of our vessel. The temperature was 350 °C and the pressure in our vessel was 891 kPa.

Today, we’re going to add 1.00 mole of oxygen gas, stand back and observe.

Nothing happens.

This is disappointing news.

Many of the substances in our vessel react (more accurately, explode) in the presence of oxygen but the ignition temperature for all of those explosions to take place is at least 500 °C. The temperature of our vessel is set at just 350 °C. At this temperature, nothing would actually happen.

There’s not enough activation energy to break bonds in the reactant particles in order to get the reaction started. We call this activation energy (EA) in chemistry. If we were to add a source of excessive heat (e.g. a matchstick), the vessel would explode.

Should we heat up the vessel to 500 °C and blow up the experiment right here?

If we did, the following reactions would happen:

image115
image117
image119
image121
image123
image125
image127
image129

Enough of these reactions – particularly the first three – are sufficiently exothermic to trigger a chain reaction – at least up to the reaction of oxygen with beryllium carbide. The vessel would bang, explode, and shatter. The helium would float away, dangerous lithium amide would fly out sideways, and polyborazine powder, whatever that is, would land on the floor.

Let’s not ignite our experiment – not yet.

Conclusion after adding 1.00 mole of oxygen gas

Substance Amount in mol
He(g) 1.000
Be(s) 0.514
LiH(s) 0.000
Li2C2(s) 0.272
B2H6(g) 0.000
Be2C(s) 0.175
H2(g) 0.007
BeC2(s) 0.136
CH4(g) 0.009
N2(g) 0.552
NH3(g) 0.154
LiNH2(s) 0.277
polyborazine 12.194 grams

Pressure: 891 kPa (higher than before due to the addition of nitrogen gas)
Temperature: 350 °C (vessel is still being maintained at constant temperature)

Oxygen was relatively uneventful. Let’s add fluorine and see what happens.

Let’s add fluorine gas

elements110009
Elements by Theodore Gray

The following three reactions would all occur as 1.00 mole of fluorine gas is added:

image133
image135
image131

These two products are quite interesting:

  • HF, hydrogen fluoride, an aqueous solution of which was used by Breaking Bad’s Walter White to dissolve evidence (his victims)
  • NF3, nitrogen trifluoride, is used as an etching agent when making printed circuit boards (PCBs)

Let’s add neon gas

elements110010
Elements by Theodore Gray

When 1.00 mole of neon gas is added, the total pressure inside the vessel increases but no reaction occurs. The concentrations of all the other gases present are unaffected.

The End

That concludes our Periodic Table Smoothie experiment. The most interesting conclusion was the discovery of polyborazine, the bizarre solid that collected at the bottom of the vessel.

Also of interest was how easily we created ammonia, one of the simplest of biological compounds, just by mixing elements together. Could the compounds necessary for life be so easy to create that their existence is an inevitable consequence of the Big Bang? Is life inevitable? If the Big Bang were to happen all over again, would life occur? And would it look any different?

Possibly not.

Pre-order my second book “We Lied To You” here

Pre-order here
Pre-order here

The content you’re learning now is probably not as true as it seems. Chemistry is a set of models that explain the macro level sometimes at the expense of detail. The more you study Chemistry, the more precise these models become, and they’ll gradually enlighten you with a newfound clarity about the inner workings of our universe. It’s profound.

Rules taught as ‘true’ usually work 90% of the time in this subject. Chemistry has rules, exceptions, exceptions to exceptions, and exceptions to those – you’ll need to peel pack these layers of rules and exceptions like an onion until you reach the core, where you’ll find Physics and Specialist Maths.

Enjoy this book. I hope it emboldens you to question everything you’re told, and encourages you to read beyond the courses you’re taught in school.

Pre-order the FREE e-book by filling in the form here.

Get my latest book here: Common VCE Chemistry Mistakes… and how to avoid them

Common VCE Chemistry Mistakes COVER.jpg

This book is a collection of common mistakes in VCE Chemistry and how to avoid them.

It comes from years of marking student SACs and exam papers, and from reading Examination Reports from the VCAA as well.

It’s free of charge, very informative, and very concise.

Click here to download the FREE book.

Redox Rules

Click to download REDOX RULES posters for VCE Chemistry
Click to download REDOX RULES posters for VCE Chemistry

What’s redox? We never learned that!

Yes, you did. I use the term “redox” to refer to all of the following chapters in Heinemann Chemistry 2, which you will have learned at the end of Term 3 (September).

  • Chapter 26: Redox (revision of Year 11)
  • Chapter 27: Galvanic Cells
  • Chapter 28: Electrolytic Cells

Don’t underestimate redox

The VCAA has consistently used redox to discriminate which schools and students have the self-discipline required to keep studying at the end of the year. Studies show that redox is taught at a time when student motivation is at its minimum: energy levels are low, emotions are high, and graduation is just over the horizon. Many schools and students gloss over these topics because they’re running out of time, any many students think they’ve grasped the topic – when they’ve actually grasped misconceptions instead.

VCAA VCE Chemistry how difficult is each topic
Notice how chapters 26, 27 and 28 are consistently the most difficult and the most frequently askedClick to download PDF version

Here are some popular redox lies (misconceptions)

LIE #1: The polarities switch during recharge
Nope. The polarities never switch. It’s the labels of ‘anode’ and ‘cathode’ that switch because the electrons are flowing the other way through the external circuit. Polarity is permanent.

LIE #2: Hydrogen fuel cells don’t emit any greenhouse gases
Wrong. They emit H2O, which is a powerful greenhouse gas. If you don’t believe that the VCAA can be this pedantic, think again. Read their 2015 Examiners Report here.

LIE #3: Each mole of electrons forms 1 mol Ag, 2 mol Cu or 3 mol Al in a cell
Wrong again. If you look at the half-equations, you’ll see that each mole of electrons actually forms 1 mol Ag, 12 mol Cu or 13 mol Al. That’s why I teach “1, 12 and 13 moles” instead of the typical “1, 2, 3 moles” rule.

LIE #4: Temperature increases the rate of reaction in electroplating
Wrong! Remember that Faraday’s first law states that m ∝ Q. Because Q = I×t, only those two things – current and time – can affect the mass deposited at the cathode.

LIE #5: Electrons always leave the anode and go towards the cathode
Wrong again. Electrons go RACO: to see what that means, download the posters above. This question appears in recent versions of Chemistry Checkpoints. Give it a try.

LIE #6: The cathode is always positive
Ask your teacher.

LIE #7: Ions flow one way in the salt bridge
Nope. Anions always migrate to the anode; and cations always migrate to the cathode.

LIE #8: KOHES always works for balancing half-equations
KOHES only works for cells with acidic electrolytes. For cells with alkaline electrolytes, which sometimes appear in VCAA papers despite not being in the study design (see page 46 here), you’ll need to use KOHES(OH). Here’s KOHES(OH) explained:

  1. Do KOHES as normal
  2. Add the same number of OH(aq) ions to each side of the half-equation to balance out the H+(aq)
  3. Cancel and simplify. Remember that H+(aq) + OH(aq) makes H2O(l). Remember also to cancel out any remaining H2O(l).

LIE #9: I can balance an unbalanced redox equation by putting numbers in the equation
Don’t be fooled by this one! The ONLY way to balance an unbalanced redox equation successfully is to do the following:

  1. Separate it into two half equations
  2. Balance them using KOHES or KOHES(OH) as appropriate
  3. Multiply them and recombine
  4. Cancel and simplify
  5. Done!

That’s a lot of work but it’s the  only way to do it successfully. If you try to ‘cheat’ by just writing numbers (molar coefficients) in front of the reactants and products, you’ll find that the charges don’t add up, and you’ll get zero marks for the question.

LIE #10: I can break up polyatomic ions to make balancing half-equations easier
Nope! You’re only allowed to separate aqueous species in a half equation or an ionic equation. Because the Mn and O are actually bonded together in a polyatomic ion, you’ll need to write this:

  • MnO4(aq) + 8H+(aq) + 5e → Mn2+(aq) + 4H2O(l)  2/2 marks

Instead of this:

  • Mn7+(aq) + 5e → Mn2+(aq)  0/2 marks

If in doubt, keep it intact and it’ll cancel out by the end if it’s a spectator ion.

LIE #11: The two reactants that are closest together on the electrochemical series react
Not always true. Use SOC SRA instead, which is explained in the posters above. Still struggling? Ask your teacher or tutor for help.

LIE #12: Oxidants are all on the top of the electrochemical series
They’re actually on the left, and all the reductants can be found on the right side of each half equation in the electrochemical series. There is no top/bottom divide on the electrochemical series: only a left/right divide of oxidants/reductants.

Decorate your school/bedroom/hallway

Surround yourselves with truthful redox revision using these 17 free Redox posters. I’ve had these up around the whiteboard for a few weeks now – they’re a constant reminder to students that redox has many ideas that are always true.

One more tip: print and laminate an electrochemical series (available here) so you can annotate it during dozens of practice dozens without wasting paper. Good luck!

Chemtrails conspiracy theory gets debunked

conds
Contrails or ‘chemtrails’? The myth has just been debunked

Since 1996, there has existed a niche group of conspiracy theorists in western countries that believes that the government (or some other authority) is spraying compounds out the back of commercial/military aircraft for a plethora of reasons. Seventeen percent of Americans believe a hilariously-named “SLAP” project (secret large-scale atmospheric program) exists in the United States, and 2% are ‘certain’ of its existence. Conspiracy theorists photograph normal aeroplane contrails and upload them to the internet, calling them ‘chemtrails’, and using them as evidence of SLAP.

The conspiracy theorists cite “mind control”, “radar mapping”, and “chemical weapons testing” among suspected motives, and they even have detected elevated concentrations of barium and aluminium in soil and atmosphere at certain locations. Conspiracy theorists use these chemical data to support their belief in the SLAP idea.

Just this month, the results of a comprehensive review of all the so-called evidence for contrails was conducted – by an impressive 77 experts in atmospheric chemistry – and they’ve concluded that the conspiracy theory seems highly unlikely to be true.

First, what are contrails?

Contrails are ice-clouds that emerge from the backs of jet engines on aeroplanes. They vary in width, colour and persistence depending on the temperature, air pressure and humidity.

Combustion in jet engines produces two products: water vapour, H2O(g), and carbon dioxide, CO2(g). These gases exit the jet engine and quickly lose momentum, eventually forming a trail in the air behind the aeroplane. The freezing cold temperatures at aeroplane altitudes freezes the water vapour in its tracks (but not the carbon dioxide – it’s not that cold!). A contrail is essentially a trail of snowflakes!

What did the scientists find?

Seventy-seven experts found 100% agreement that SLAP was not the simplest/most likely explanation for the following phenomena:

http://www.ess.uci.edu/~sjdavis/SLAP/
Source: http://www.ess.uci.edu/~sjdavis/SLAP/

Why am I mentioning this?

The ‘chemtrails’ conspiracy emerged as one of the most recent forms of chemophobia. It originated in 1996 when a paper was published by the United States Air Force called Weather as a Force Multiplier: Owning the Weather in 2025 suggested spraying compounds from aeroplanes to help engineer the climate. This seeded the conspiracy, and ebbing public trust of experts/scientists helped it to balloon out of proportion from there.

Until this study was conducted, the scientific community had no credible evidence to the contrary: we had no rebuttal to offer the ‘chemtrails’ crowd. This study finally puts the overwhelming majority of evidence (and 76 of the 77 experts involved) in favour of there being no such SLAP project – and no ‘chemtrails’ to speak of.

Chemophobia

It’s widespread, irrational, harmful, and hard to break. One excerpt from a New York Times article on this story said:

“The goal, the researchers say, is not so much to change the minds of hard-core believers, but to provide a rebuttal — the kind that would show up in a Google search — to persuade other people to steer clear of this idea.”

This study, it seems, is aimed at the neutral 60%. This is exactly how we need to be fighting chemophobia.

Question: Have similar studies been conducted for the other forms of chemophobia that exist?