Examination reports are very useful but most students don’t read them. I’ve scoured the examination reports from 2017, 2018 and 2019 and analysed how many marks were awarded for each topic of the VCE Chemistry course, and recorded what percentage of students got these right. As usual, this revealed that VCAA asks more questions on topics that students frequently get wrong.
Tip for students: focus more of your attention on the red topics in the chart above.
Chapter numbers refer to those used in the Heinemann Chemistry 2 textbook.
Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring around Melbourne.
There are 76 formulae on 8 pages. At least 10 of these formulae aren’t in the three main chemistry textbooks. Orders are shipped in A4-sized booklet that resembles the VCAA Data Booklet.
Orders from schools, students and tutors are all welcome. Price includes free international delivery and a 10% voucher for the T-shirt store.
James Kennedy achieved outstanding A-level results in 2006 in Maths, Chemistry, Physics and Biology. Those excellent grades (which equate to an ATAR of 99+) earned him a BA (Hons) degree and a Masters degree in Natural Sciences from the University of Cambridge.
Shortcut formulae were just one of the techniques James used to pass his A-level exams and get into Cambridge. Along with structured revision, revision guides, practice papers and study notes on wall-cards, James used shortcut formulae to save precious time in the examination hall. You can get your own copy of these original shortcut formulae – revised and updated for the 2017-2021 VCE Chemistry course – for just $55 including free international shipping. Click here to get your copy.
Here’s an preview of the inside
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.
Only positively-charged fragments from mass spectrometers produce a peak on the spectrum. Uncharged free radical fragments are not detected because they lack a positive charge.
Weak acids with a lower Ka value are the weakest… this means that they ionise to a lesser extent when in aqueous solution, giving rise to a lower concentration of available H3O+(aq) and a higher pH.
The conversion of triglycerides (a type of ester) into biodiesel (another type of ester) is called transesterification.
The covalent bonds between deoxyribose and phosphate groups in DNA form a group of atoms called a phosphodiester group.
Ether bonds and glycosidc bonds are not the same. Ether bonds are C-O-C. Glycosidic bonds are a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.
Amide groups and peptide groups are not the same, either. Amide groups are CONH. Peptide groups are CONH between amino acid residues in a polypeptide chain. Nylon, for example, has amide groups (CONH) which aren’t called peptide groups.
Ether: C-O-C Ester: COO Amine: NH2 Amide: CONH
The molar mass of any amino acid without its Z-group is 74 gmol-1.
The molar mass of glucose, fructose and galactose (all monosaccharides) is 180 gmol-1. By coincidence, aspirin is also 180 gmol-1.
The molar mass of sucrose is 342 gmol-1 because (180*2)-18=342.
In general, energy is required to break bonds. Energy is released when bonds are formed.
Use the formula C-(H/2) to find how many C=C are present in a fatty acid (only works for fatty acids).
Use the shortcut formula (Ka/[acid])^0.5 to find % ionisation of a weak acid.
Use -log(Ka) to find the exact pH at the end point of an indicator.
Use the quick titration formula for rapid multi-choice titration questions: c1v1/ratio1 = c2v2/ratio2
A hydrogen bond is an intermolecular bond that forms between O-H groups. The covalent bond between the O and the H is not a hydrogen bond.
Can you write the half-equation for the reaction occurring at the anode in an ethanol-oxygen fuel cell with an alkaline electrolyte? Tip: start by writing the known reactants and products then use KOHES(OH) to balance your equation.
The products of a titration determine the pH at the equivalence point. For example, the the pH at the equivalence point in a titration between CH3COOH(aq) and NaOH(aq) is around 8.5 because at equivalence point, only products are present: Na+(aq) and CH3COO–(aq). The ethanoate ion (CH3COO–(aq)) is a weak base, which makes the solution produced slightly basic.
If you have absolutely no clue in the multiple choice sections, pick C. In the last 4 years of VCE Chemistry examinations, C has been correct 50% more of the time than B.
The multiple choice questions really do get harder towards the end. I’ve done the statistics.
Use your reading time wisely. During reading time, read all the questions with the following idea in mind: “how would I do this question?” without actually doing the question.
Bring sharp pencils.
Sleep early tonight (before 9pm). At this stage, getting enough sleep is far more important than revising those tiny details that may or may not come up in the examination.
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.
Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring.
There are 76 formulae in total, at least 10 of which are original. Orders are shipped on A3 paper, stapled along the spine and folded to an A4-sized booklet that resembles the VCAA Data Booklet.
Orders from schools, students and tutors are all welcome. Price includes free international delivery and 10% voucher for the T-shirt store.
We all remember the endless ‘cells’ questions at the end of the 2014 Chemistry exam. Less memorable was that the 2013 examination awarded a similar number of marks for ‘cells’ knowledge. Exams that test knowledge of these last two chapters in the course (Galvanic Cells and Electrolytic Cells) separate goodstudents from great students because these topics are taught at the end of the course when students are getting tired and teachers are rushing to finish the course before trial examinations and the Term 3 holidays. Only the most diligent students go out of their way to get a complete understanding of these topics at this stage in the year – and they’re the ones who benefit from this type of exam.
Interestingly, in 2013 and 2014, 33% of the marks in the VCE Chemistry examination were awarded for knowledge of just four of the textbook’s 28 chapters. Therefore, if you’re short of time, focus your efforts on these four chapters (28, 27, 16 and 12) before working on the rest.
“Based on past examinations, students should focus their revision on Electrolysis (28), Galvanic Cells (27), Equilibrium (16) and Biomolecules (12) before working on the rest…”
While the structure of past examinations provide no guarantees about future examinations, it’s still reasonable to expect that the top 5 subjects will remain mostly the same in 2015 as in previous years.
Correlation of the total number of marks awarded per chapter is moderate with R² = 0.48 for 2013 and 2014.
Consider getting a home tutor who can answer your questions and explain difficult concepts to you. Students learn much faster with a tutor than on their own.
RTQ! This is one of the most common sources of errors in Chemistry examinations. When I sat 2014’s VCE Chemistry examination, I lost 5 marks in the paper for not reading the question! Your teachers will have told you to ‘read the question’ or ‘RTQ’ as well.
Task word errors can be avoided in two ways. First, learn the exact meanings of each task word. This is particularly important for EAL Chemistry students. Second, highlight the task words in a question (just as you would highlight the important information in a complicated titration question).
For example: “Explain how the different intermolecular forces in butane and butan-1-ol give these two compounds different boiling points. 3 marks”
In your answer, you will need to explain the effect of intermolecular forces. This means you’ll need to write why the butan-1-ol forms hydrogen bonds (due to the polar nature of the hydroxyl group) whereas butane forms only dispersion forces with its surrounding molecules (due to the non-polar nature of the molecule). You’ll also need to make some kind of comparison (which is hinted at by the word, ‘different’) in order to get all 3 marks.
Example 3-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule. Hydrogen bonds are stronger than dispersion forces and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.
One mark would be awarded for each of:
Explaining the intermolecular bonding of butan-1-ol
Explaining the intermolecular bonding of butane
Comparing the relative strengths of the two and relating this to boiling points
In a 2-mark answer, the student might omit the comparison step:
Example 2-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule.”
In a 1-mark answer, the student might only mention one of the two molecules, or might only make a comparison without explaining whythese two compounds display different types of intermolecular forces.
Example 1-mark answer: “Hydrogen bonds formed by butan-1-ol are stronger than dispersion forces formed by butane and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.
In that latter example, the student didn’t explain the reasons for the differences in intermolecular bonding – they merely stated them.
Task word
Chinese
Description
Calculate
计算
Write the value of a number (include equations)
Compare
比较
Write the similarities and differences between
Evaluate
评价
Write arguments for and against
Define
确定
Write the exact meaning of
Describe
描述
Write details about (a thing or a process)
Discuss
讨论
Write reasons for and against
Distinguish
区分
Write the differences between two or more things
Explain
讲解
Write details to give the reader an understanding of
Find/State
写
Write (sometimes by doing calculations)
Identify
鉴定
Write which one
Illustrate
说明
Write something and draw a labelled diagram as well
Indicate
表明
Write which one (usually on a given diagram)
List
列出
Write a list
Outline
轮廓
Write a summary
Suggest
建议
Write a reason for a phenomenon
To what extent
到什么程度
Write whether a reaction is complete (→) or incomplete (↔).
Watch task words in the examination… and make sure you answer the question!