Tag Archives: Language

Chemistry Task Words

Chemistry VCE task words verbs for Chemistry education and instruction
Click for a PDF version of these task words

RTQ! This is one of the most common sources of errors in Chemistry examinations. When I sat 2014’s VCE Chemistry examination, I lost 5 marks in the paper for not reading the question! Your teachers will have told you to ‘read the question’ or ‘RTQ’ as well.

Task word errors can be avoided in two ways. First, learn the exact meanings of each task word. This is particularly important for EAL Chemistry students. Second, highlight the task words in a question (just as you would highlight the important information in a complicated titration question).

For example: “Explain how the different intermolecular forces in butane and butan-1-ol give these two compounds different boiling points. 3 marks

In your answer, you will need to explain the effect of intermolecular forces. This means you’ll need to write why the butan-1-ol forms hydrogen bonds (due to the polar nature of the hydroxyl group) whereas butane forms only dispersion forces with its surrounding molecules (due to the non-polar nature of the molecule). You’ll also need to make some kind of comparison (which is hinted at by the word, ‘different’) in order to get all 3 marks.

Example 3-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule. Hydrogen bonds are stronger than dispersion forces and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.

One mark would be awarded for each of:

  • Explaining the intermolecular bonding of butan-1-ol
  • Explaining the intermolecular bonding of butane
  • Comparing the relative strengths of the two and relating this to boiling points

In a 2-mark answer, the student might omit the comparison step:

Example 2-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule.”

In a 1-mark answer, the student might only mention one of the two molecules, or might only make a comparison without explaining why these two compounds display different types of intermolecular forces.

Example 1-mark answer: “Hydrogen bonds formed by butan-1-ol are stronger than dispersion forces formed by butane and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.

In that latter example, the student didn’t explain the reasons for the differences in intermolecular bonding – they merely stated them.

Task word Chinese Description
Calculate 计算 Write the value of a number (include equations)
Compare 比较 Write the similarities and differences between
Evaluate 评价 Write arguments for and against
Define 确定 Write the exact meaning of
Describe 描述 Write details about (a thing or a process)
Discuss 讨论 Write reasons for and against
Distinguish 区分 Write the differences between two or more things
Explain 讲解 Write details to give the reader an understanding of
Find/State Write (sometimes by doing calculations)
Identify 鉴定 Write which one
Illustrate 说明 Write something and draw a labelled diagram as well
Indicate 表明 Write which one (usually on a given diagram)
List 列出 Write a list
Outline 轮廓 Write a summary
Suggest 建议 Write a reason for a phenomenon
To what extent 到什么程度 Write whether a reaction is complete (→) or incomplete (↔).

Watch task words in the examination… and make sure you answer the question!

Common Names of Carboxylic Acids

Ever wondered why ‘formic acid’ is so-called? Or montanic acid? Or melissic acid? This handy A3 poster shows you the Latin/Greek/Persian origins of each of the carboxylic acids’ common names from ‘formic acid’ (no. 1) to ‘hexatriacontylic acid’ (no. 36). Each acid comes with a cute graphical description of where its name comes from.

Common Names of Carboxylic Acids
Click to enlarge

There are some interesting origin stories behind each of these names. Formic acid, for example, is found in insect stings (hence the name). Palmitic acid is found in palm trees (hence the name), and myristic acid is found in nutmeg.

Three of the carboxylic acids are named after goats: caproic acid, caprylic acid and capric acid. Together, these three molecules comprise 15% of the fatty acids found in goats’ milk, and many reports also suggest that they smell ‘goat-like’!

Many of the odd-numbered higher carboxylic acids are rarer in nature and thus didn’t earn a common name until recently. Undecylic acid, for example, which has eleven carbon atoms in its backbone, is named simply after the Greek word for ‘eleven’.

Click here for more Chemistry posters.

Book: Diversity and Inclusion in Australian Schools

Diversity and Inclusion in Australian Schools

Necessary primer for teachers
396 pages, ★

This book is an introduction to the level of diversity we should expect in Australian schools. It covers:

  • Linguistic diversity (ESL and native speakers)
  • Cultural diversity (including indigenous cultures)
  • Gender diversity (i.e. girls and boys)
  • Learning difficulties
  • Challenging behaviour
  • Complex communication needs (e.g. inability to speak)
  • Intellectual disabilities (as different from, and more severe than, learning difficulties)
  • Sensory impairment
  • Autism spectrum disorders
  • “Gifted and Talented” students

This book takes a highly theoretical, academic approach to the above topics. It describes what’s already being done in schools, and illustrates each topic with anecdotes from students’ perspectives but doesn’t directly teach teachers how to adapt their lessons to embrace this diversity. Even though this book was an excellent primer to the topic of diversity, I still need to read more about how to design lessons that cater to a range of learning styles in the classroom from books with a more practical focus. For my mini-project on ADHD, for example, the information in this textbook was far from adequate to make a 5-minute PowerPoint presentation. (Bizarrely, it covers deafness and gender in far more depth.)

That said, it’s one of those books that all teachers should refer to every time we meet a new form of diversity in our teaching career. It’s unlikely we’ll see all of these diversities in our first cohort of students—but it’s likely that we’ll see all of these diversities at some point in our careers. All teachers should have this book on their reference shelf.

At a hefty $79 exc. GST, this book is only worthwhile for teachers or teachers-in-training who will use this book professionally. Highly recommended for teachers. Not recommended for anyone else.