Tag Archives: lithium

Chemtrails conspiracy theory gets debunked

conds
Contrails or ‘chemtrails’? The myth has just been debunked

Since 1996, there has existed a niche group of conspiracy theorists in western countries that believes that the government (or some other authority) is spraying compounds out the back of commercial/military aircraft for a plethora of reasons. Seventeen percent of Americans believe a hilariously-named “SLAP” project (secret large-scale atmospheric program) exists in the United States, and 2% are ‘certain’ of its existence. Conspiracy theorists photograph normal aeroplane contrails and upload them to the internet, calling them ‘chemtrails’, and using them as evidence of SLAP.

The conspiracy theorists cite “mind control”, “radar mapping”, and “chemical weapons testing” among suspected motives, and they even have detected elevated concentrations of barium and aluminium in soil and atmosphere at certain locations. Conspiracy theorists use these chemical data to support their belief in the SLAP idea.

Just this month, the results of a comprehensive review of all the so-called evidence for contrails was conducted – by an impressive 77 experts in atmospheric chemistry – and they’ve concluded that the conspiracy theory seems highly unlikely to be true.

First, what are contrails?

Contrails are ice-clouds that emerge from the backs of jet engines on aeroplanes. They vary in width, colour and persistence depending on the temperature, air pressure and humidity.

Combustion in jet engines produces two products: water vapour, H2O(g), and carbon dioxide, CO2(g). These gases exit the jet engine and quickly lose momentum, eventually forming a trail in the air behind the aeroplane. The freezing cold temperatures at aeroplane altitudes freezes the water vapour in its tracks (but not the carbon dioxide – it’s not that cold!). A contrail is essentially a trail of snowflakes!

What did the scientists find?

Seventy-seven experts found 100% agreement that SLAP was not the simplest/most likely explanation for the following phenomena:

http://www.ess.uci.edu/~sjdavis/SLAP/
Source: http://www.ess.uci.edu/~sjdavis/SLAP/

Why am I mentioning this?

The ‘chemtrails’ conspiracy emerged as one of the most recent forms of chemophobia. It originated in 1996 when a paper was published by the United States Air Force called Weather as a Force Multiplier: Owning the Weather in 2025 suggested spraying compounds from aeroplanes to help engineer the climate. This seeded the conspiracy, and ebbing public trust of experts/scientists helped it to balloon out of proportion from there.

Until this study was conducted, the scientific community had no credible evidence to the contrary: we had no rebuttal to offer the ‘chemtrails’ crowd. This study finally puts the overwhelming majority of evidence (and 76 of the 77 experts involved) in favour of there being no such SLAP project – and no ‘chemtrails’ to speak of.

Chemophobia

It’s widespread, irrational, harmful, and hard to break. One excerpt from a New York Times article on this story said:

“The goal, the researchers say, is not so much to change the minds of hard-core believers, but to provide a rebuttal — the kind that would show up in a Google search — to persuade other people to steer clear of this idea.”

This study, it seems, is aimed at the neutral 60%. This is exactly how we need to be fighting chemophobia.

Question: Have similar studies been conducted for the other forms of chemophobia that exist?

Let’s add lithium powder

Lithium: a page from Theodore Gray's book The Elements
Lithium: a page from Theodore Gray’s book The Elements

Initial condition

  • Hydrogen gas, H2(g): 1.00 mol
  • Helium gas, He(g): 1.00 mol

Last week, our vessel contained a mixture of hydrogen and helium gases. No chemical reactions have occurred so far, but that is about to change. Today, we’ll add 1.00 mole of lithium powder to the mixture and observe our first chemical reaction.

What does lithium look like?

Lithium is a soft, silvery metal with the consistency of Parmesan cheese. Lumps of lithium can be cut with a knife and it’s so light that it floats on oil. It would float on water as well if it weren’t for the violent reaction that would take place. Lithium is very well-known by science students for its ability to react with water, producing hydrogen gas and an alkaline solution of lithium hydroxide.

image022.png

There’s no water in our vessel so the above reaction won’t actually take place. We’ve only got hydrogen gas and helium gas inside. Let’s see if our powdered lithium reacts with either of those gases.

Will the lithium powder react in our vessel?

Yes! Lithium reacts with hydrogen gas very slowly. One paper by NASA cited a reaction occurring at 29°C but the yield and rate were both very low. Because I want to initiate as many reactions as possible in this experiment, I’m going to heat my vessel to 99°C by immersing it in a bath of hot water. According to the NASA paper, this temperature would give my reaction a 60% yield after two hours.

image013.png

Lithium hydride is beginning to collect in the bottom of my 10-litre vessel. It’s a grey-to-colourless solid with a high melting point.

How much of each substance do we now have in the vessel?

First, we need to know which reagent is limiting. We can calculate this by using the following rule:

image023.png

Let’s substitute the values into the expression for all the reactants in this reaction: Li(s) and H2(g).

image026
image028
image030

If the yield was 100% (i.e. a complete reaction), I’d expect to make 1.00 mole of lithium hydride. However, we’re only going to get 0.60 moles because according to the NASA paper, the yield of this reaction is only 60% at my chosen temperature.

Let’s do an ‘ice’ table to find out how much of each reactant reacts, and hence how much of each substance we have left in our reactor vessel.

units are mol 2Li H2 2LiH
I (initial) 1.00 1.00 0
C (change) -0.60 -0.30 +0.60
E (equilibrium) 0.40 0.70 0.60

By the end of our reaction, we’d have:

  • H2(g): 0.70 mol
  • He(g): 1.00 mol
  • Li(s): 0.40 mol (still solid: it melts at 180.5 degrees)
  • LiH(s): 0.60 mol

What does 0.60 mol LiH look like?

Let’s use the density formula to try find out how many spoonfuls of LiH we’ve created.

image035
image037
image039
image041
image043

We’ve made 6.11 millilitres of lithium hydride powder! That’s a heaped teaspoon of LiH.

What’s the resulting pressure in the vessel?

Our elevated temperature of 99°C will have caused a considerable pressure increase inside the vessel.

image002
image050
image016

That’s 5.2 atmospheres (atm) of pressure, which is quite high. A typical car tyre is about 2 atm for comparison.

What if the vessel exploded?

BANG. The contents of the vessel, after they’ve rained down on an unsuspecting crowd, would react explosively with the water and other compounds in our bodies to produce caustic lithium hydroxide and toxic lithium salts. I recommend stepping away from the vessel and behind a thick safety screen at this point. Even though our imaginary vessel is quite strong, we better put on a lab coat and safety glasses as well—just in case.

Conclusion after adding lithium powder

  • H2(g): 0.70 mol
  • He(g): 1.00 mol
  • Li(s): 0.40 mol (still solid: it melts at 180.5 degrees)
  • LiH(s): 0.60 mol
  • Pressure = 525.5 kPa
  • Temperature = 99°C

Next week, we’ll add 1.00 mole of beryllium to the vessel and see what happens.

Reference: Smith, R. L.; Miser, J. W. (1963). Compilation of the properties of lithium hydride. NASA