Tag Archives: posters

Redox Rules

Click to download REDOX RULES posters for VCE Chemistry
Click to download REDOX RULES posters for VCE Chemistry

What’s redox? We never learned that!

Yes, you did. I use the term “redox” to refer to all of the following chapters in Heinemann Chemistry 2, which you will have learned at the end of Term 3 (September).

  • Chapter 26: Redox (revision of Year 11)
  • Chapter 27: Galvanic Cells
  • Chapter 28: Electrolytic Cells

Don’t underestimate redox

The VCAA has consistently used redox to discriminate which schools and students have the self-discipline required to keep studying at the end of the year. Studies show that redox is taught at a time when student motivation is at its minimum: energy levels are low, emotions are high, and graduation is just over the horizon. Many schools and students gloss over these topics because they’re running out of time, any many students think they’ve grasped the topic – when they’ve actually grasped misconceptions instead.

VCAA VCE Chemistry how difficult is each topic
Notice how chapters 26, 27 and 28 are consistently the most difficult and the most frequently askedClick to download PDF version

Here are some popular redox lies (misconceptions)

LIE #1: The polarities switch during recharge
Nope. The polarities never switch. It’s the labels of ‘anode’ and ‘cathode’ that switch because the electrons are flowing the other way through the external circuit. Polarity is permanent.

LIE #2: Hydrogen fuel cells don’t emit any greenhouse gases
Wrong. They emit H2O, which is a powerful greenhouse gas. If you don’t believe that the VCAA can be this pedantic, think again. Read their 2015 Examiners Report here.

LIE #3: Each mole of electrons forms 1 mol Ag, 2 mol Cu or 3 mol Al in a cell
Wrong again. If you look at the half-equations, you’ll see that each mole of electrons actually forms 1 mol Ag, 12 mol Cu or 13 mol Al. That’s why I teach “1, 12 and 13 moles” instead of the typical “1, 2, 3 moles” rule.

LIE #4: Temperature increases the rate of reaction in electroplating
Wrong! Remember that Faraday’s first law states that m ∝ Q. Because Q = I×t, only those two things – current and time – can affect the mass deposited at the cathode.

LIE #5: Electrons always leave the anode and go towards the cathode
Wrong again. Electrons go RACO: to see what that means, download the posters above. This question appears in recent versions of Chemistry Checkpoints. Give it a try.

LIE #6: The cathode is always positive
Ask your teacher.

LIE #7: Ions flow one way in the salt bridge
Nope. Anions always migrate to the anode; and cations always migrate to the cathode.

LIE #8: KOHES always works for balancing half-equations
KOHES only works for cells with acidic electrolytes. For cells with alkaline electrolytes, which sometimes appear in VCAA papers despite not being in the study design (see page 46 here), you’ll need to use KOHES(OH). Here’s KOHES(OH) explained:

  1. Do KOHES as normal
  2. Add the same number of OH(aq) ions to each side of the half-equation to balance out the H+(aq)
  3. Cancel and simplify. Remember that H+(aq) + OH(aq) makes H2O(l). Remember also to cancel out any remaining H2O(l).

LIE #9: I can balance an unbalanced redox equation by putting numbers in the equation
Don’t be fooled by this one! The ONLY way to balance an unbalanced redox equation successfully is to do the following:

  1. Separate it into two half equations
  2. Balance them using KOHES or KOHES(OH) as appropriate
  3. Multiply them and recombine
  4. Cancel and simplify
  5. Done!

That’s a lot of work but it’s the  only way to do it successfully. If you try to ‘cheat’ by just writing numbers (molar coefficients) in front of the reactants and products, you’ll find that the charges don’t add up, and you’ll get zero marks for the question.

LIE #10: I can break up polyatomic ions to make balancing half-equations easier
Nope! You’re only allowed to separate aqueous species in a half equation or an ionic equation. Because the Mn and O are actually bonded together in a polyatomic ion, you’ll need to write this:

  • MnO4(aq) + 8H+(aq) + 5e → Mn2+(aq) + 4H2O(l)  2/2 marks

Instead of this:

  • Mn7+(aq) + 5e → Mn2+(aq)  0/2 marks

If in doubt, keep it intact and it’ll cancel out by the end if it’s a spectator ion.

LIE #11: The two reactants that are closest together on the electrochemical series react
Not always true. Use SOC SRA instead, which is explained in the posters above. Still struggling? Ask your teacher or tutor for help.

LIE #12: Oxidants are all on the top of the electrochemical series
They’re actually on the left, and all the reductants can be found on the right side of each half equation in the electrochemical series. There is no top/bottom divide on the electrochemical series: only a left/right divide of oxidants/reductants.

Decorate your school/bedroom/hallway

Surround yourselves with truthful redox revision using these 17 free Redox posters. I’ve had these up around the whiteboard for a few weeks now – they’re a constant reminder to students that redox has many ideas that are always true.

One more tip: print and laminate an electrochemical series (available here) so you can annotate it during dozens of practice dozens without wasting paper. Good luck!

All-Natural Banana Poster Series PDFs

Ingredients of an All-Natural Banana and other fruits set $99
New for 2016: Click to download free PDFs of all twelve All-Natural Posters

It’s been two years since I posted the All-Natural Banana. Motivation behind this poster was to dispel the myth that “natural = good” and “artificial = bad”. It’s been a very successful project. It’s spawned 11 more “Ingredients” posters, a successful clothing line, and has sold thousands of print copies worldwide via this website.

Online news portal io9 then published a news story about the All-Natural Banana, which was followed in quick succession by articles in Vox, Forbes, Business Insider, the New York Times and more.

The All-Natural Banana has now received over 700,000 views via this website and millions more views via social media.

From today onwards, you can download the original PDF artworks for free. They come with a Attribution-NonCommercial 4.0 International Creative Commons License, which means that you can share them, print them and modify them as much as you like for non-commercial purposes only.

I’ll be following this up with an article on the ‘Origins of Chemophobia’ next week. Subscribe to this website below or subscribe via my Apple News channel here.

Click here to download the whole poster set.

Creative Commons Licence
All-natural Banana by James Kennedy is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at https://jameskennedymonash.wordpress.com/2013/12/12/ingredients-of-an-all-natural-banana/.

Bilingual Chemistry Classroom Posters

English-Chinese Chemistry Posters Classroom Set. Click to download editable Word document version.
Click to download editable Word document version

Decorate your Chemistry classroom with these 40 free bilingual Chemistry posters.

Topics include:

  • lab equipment;
  • redox;
  • ions;
  • organic nomenclature; and
  • molecular geometry.

Feel free to edit or share them.

Also… Get the famous ‘all-natural banana’ poster prints here.

Poster Selection 3

Remember to check out our T-Shirt Store with T-shirts in 7 languages!

Visit the T-Shirt Store for Chemistry T-Shirts Made in Australia in 7 Languages. Buy online.

Get your My First Physics Alphabet poster set here, in both Pink and Blue editions

My Physics Alphabet Poster Set of 4 in BLUE
My Physics Alphabet Poster Set of 4 in PINK

For more posters and free infographics, visit the Posters section of the site here.

Common Names of Carboxylic Acids

Ever wondered why ‘formic acid’ is so-called? Or montanic acid? Or melissic acid? This handy A3 poster shows you the Latin/Greek/Persian origins of each of the carboxylic acids’ common names from ‘formic acid’ (no. 1) to ‘hexatriacontylic acid’ (no. 36). Each acid comes with a cute graphical description of where its name comes from.

Common Names of Carboxylic Acids
Click to enlarge

There are some interesting origin stories behind each of these names. Formic acid, for example, is found in insect stings (hence the name). Palmitic acid is found in palm trees (hence the name), and myristic acid is found in nutmeg.

Three of the carboxylic acids are named after goats: caproic acid, caprylic acid and capric acid. Together, these three molecules comprise 15% of the fatty acids found in goats’ milk, and many reports also suggest that they smell ‘goat-like’!

Many of the odd-numbered higher carboxylic acids are rarer in nature and thus didn’t earn a common name until recently. Undecylic acid, for example, which has eleven carbon atoms in its backbone, is named simply after the Greek word for ‘eleven’.

Click here for more Chemistry posters.

The most beautiful Chemistry videos I’ve ever seen

Beautiful Chemistry banner
Image via BeautifulChemistry.net

I’ve discovered the most beautiful Chemistry website ever created via someone’s Twitter feed. It was created by several researchers at the Institute of Advanced Technology at University of Science and Technology in China. The goal of this project is to bring the beauty of chemistry to the general public through digital media and technology.

The first project of the collaboration used a 4K UltraHD camera to capture beautiful chemical reactions in specially-designed glass containers that eliminate the problems of refraction and reflection caused by rounded beakers and test tubes. I also love how the researchers play with time, slowing down and speeding up the videos at just the right moments. The video footage is then annotated and matched perfectly with background music to give a truly mesmerising result. Here are three of my favourites:

Precipitation reactions (my favourite)

Metal displacement reactions

Bubbles!

As a visual learner and a huge fan of new ways to pique people’s interest in science, I got in touch with Yan Liang, an Associate professor at the Department of Science and Technology Communication at the University of Science and Technology of China (USTC).

Yan Liang, like the visionary data-visualisation gurus David McCandless and Hans Rosling, is passionate about bringing hidden data to the public domain in a form that’s really easy to digest. When I asked him what inspired him to make these videos, he said:

“To me, science is beautiful and full of wonders. However, the beauty of science is often hidden inside research laboratories and buried in scientific literature. By creating engaging visuals and make them available to the general public, I believe more people would appreciate the beauty and wonders of science, and hopeful get interested in science.”

Just like the All-Natural Banana poster series I posted one year ago, the goal of the BeautifulChemistry.net project is mostly about education and scientific outreach.

“The goal is to bring the beauty of chemistry to the general public. To many people, Chemistry might usually be associated with pollution, poison, explosions, etc. We want to show them the other side of chemistry, which is much less well-known. We also want to get more kids and students interested in chemistry and inspire them to learn more chemical knowledge.”

Since Yan Liang, Edison Zheng, Jiyuan Liu, Xiangang Tao and Wei Huang launched Beautiful Chemistry on September 30th, 2014, they have received over 110,000 unique visitors and over 2 million page views. The project has been a huge success, and has already inspired young people worldwide to pursue Chemistry.

“People love our videos of chemical reactions. Some people commented if they saw these videos when they were in high schools, they might work harder and learn more chemistry. A 15-year old student from Germany and others told us our videos inspired them to shoot their own videos of chemical reactions. Artists like these videos and many request our footage to make music videos.”

They’ve got some exciting plans for the future, too. Yan Liang tells me they’re planning to use microscopes to film future videos and that they’re developing a fashionable clothing line-up as well!

Beautiful Chemistry Metal Displacement Clothing for Women
Reaction between Zn(s) + Pb(NO3)2(aq) to produce beautiful crystals of lead

There are currently 33 gorgeous 4K videos on their website, and there’s even a Chinese version as well. Check out their website and subscribe to their blog here. You can see more of Yan Liang’s projects, including amazing scientific illustrations, at l2molecule.com.

Full “Ingredients” Poster Set Just $99 with Free World Shipping!

From today, all 12 Ingredients of an All-Natural Banana (and other Fruits) posters are available for just $99 with free world shipping by clicking the image below.

Ingredients of an All-Natural Banana and other fruits set $99

They’ve been featured on dozens of news websites and magazines and received over 2 million views in total this year. They started as an educational ‘hook’ for the classroom (specifically to introduce organic chemistry), but went viral online and sparked articles from all sides of the “is natural always best?” debate.

From today, get the entire original 12-poster set on sturdy 300 gsm card stock for just $99 with free world shipping by clicking the button above. (Usual selling price is $10 each plus postage).

Ingredients of an All-Natural Coffee Bean

Following last week’s Starbucks® graphic, it seems right to follow up with a quick poster on the Ingredients of An All-Natural Roasted Coffee Bean.

The Ingredients poster series was featured in Forbes last week (article written by Robert J. Szczerba, CEO of X Tech Ventures).

Follow me on Twitter (@VCEasy) to see all the latest posters (unfinished ones included!)

Ingredients of an All-Natural Coffee Bean
jameskennedymonash.wordpress.com

Ingredients of All-Natural Cherries

Cherries are extremely sweet, and are unusual in that they contain more glucose (52%) than fructose (42%). Their bright red colour comes from the carotenes and capsanthin (the E160 colourings) that are present in high quantities throughout the fruit.

Cherry flavour comes from a huge collection of aroma compounds produced naturally by the cherry. To make all of these compounds in the lab, then mix them together in the correct proportions would be ridiculously time-consuming and expensive.

When making artificial cherry flavourings, only the first two compounds are usually added: (Z)-3-hexenol and 2-heptanone. Artificial cherry flavouring thus tastes absolutely nothing like real cherries: it lacks most of the ingredients that give real cherries their delicious flavour.

It’s quite a different story with oranges and lemons, though. Most of the flavour of oranges and lemons comes from (+)-limonene and (-)-limonene, which, by themselves, smell like orange and lemon, respectively.

Ingredients of All-Natural Cherries
jameskennedymonash.wordpress.com

Artificial vs Natural Watermelon & Sweetcorn

Inspired by the recent Peach infographic, I set out to find the least natural fruit in existence, and decided it was probably the modern watermelon. Take a look below: which one would you rather eat?

Artificial vs Natural Watermelon
jameskennedymonash.wordpress.com

The watermelon, delicious as it is, has increased from 50 mm to 660 mm in diameter, which represents a 1680-fold increase in volume. While ancient “wild watermelons” weighed no more than 80 grams, modern watermelons can range from 2 kg to 8 kg in the supermarket, while the Guiness World Record for the heaviest watermelon recorded exceeded 121 kilograms in the year 2000. Thousands of years of human-induced evolution have worked miracles on these fruits. Let’s not forget that they’re completely artificial.

The most famous example of artificial selection is of course the selective breeding of the feeble teosinte plant into juicy, delicious, North American sweetcorn.

artificial natural corn james kennedy monash science chemistry
jameskennedymonash.wordpress.com

In 9000 years, sweetcorn has become 1000 times larger, 3.5 times sweeter, much easier to peel and much easier to grow than its wild ancestor. It no longer resembles the original teosinte plant at all. Around half of this artificial selection happened since the fifteenth century, when European settlers placed new selection pressures on the crop to suit their exotic taste buds.

That’s all for now… More exciting infographics coming soon. Enjoy! 😉

Ingredients of An All-Natural Peach

I enjoyed reading the discussion that last week’s Artificial vs Natural Peach spawned on Tumblr and Facebook. People discussed the meaning of “natural” versus “domesticated”, and debated whether humans have really “improved” fruits in the last few millennia or just evolved them into giant candy.

I hope that people now see the irony in the title, “Ingredients of an All-Natural Peach”. The fruits we grow aren’t natural at all—but I still love to eat them!

Ingredients of an All-Natural Peach POSTER

jameskennedymonash.wordpress.com

Over the next few weeks, I’ll be posting more Ingredients posters onto this blog. I have a whole stash of them lined up, ready for you to eat…

I’m also looking for your ideas. What would you like to see the “ingredients” of next? Vanilla? Tea? List them in the comments below.

Stay up-to-date by following @VCEasy on Twitter, where I tweet about Chemistry for visual learners. These posters usually appear there first.

Enjoy 🙂

Artificial vs Natural Peach

Artificial vs Natural Peach jameskennedymonash

This artificial vs natural foods phenomenon has grown somewhat since the All-Natural Banana.

This infographic explores the differences between the natural, “wild peach” and its modern, artificial relative. It explores how the ancient Chinese developed a small, wild fruit (that tasted like a lentil) into the juicy, delicious peaches that we eat today.

This image also pays homage to the thousands of years of toil that farmers put into developing the Peach regardless of whether they were aware of it consciously or not.

After the wild peach was domesticated in 4000 B.C., farmers selected seeds from the tastiest fruits for re-planting. They tended to the trees for thousands of years, and the fruits became bigger and juicier with each generation. After 6000 years of artificial selection, the resulting Peach was 16 times larger, 27% juicier and 4% sweeter than its wild cousin, and had massive increases in nutrients essential for human survival as well.

Which one would you rather eat?

My Physics Alphabet Goes Pink!

My Physics Alphabet Poster Set of 4 in BLUE My Physics Alphabet Poster Set of 4 in PINK

The first three posters in the series were My Greek Physics Alphabet (which went viral on the internet), My First Physics Alphabet, and My BIG Physics Alphabet. They teach Physics notations in a kindergarten-friendly medium. The posters include B is for magnetic flux density, Q is for electric charge, I is for current and Z is for atomic number. They also include a few notations that make sense to non-physicists too, like “M is for molar mass”.

The fourth poster is called My Blackboard Bold Alphabet and features V is for Vector Space, J is for Irrational Numbers and H is for Hamiltonian Quarternions, along with more familiar notations, like R is for Real Numbers.

I hope this poster set encourages at least one young person to pursue math & science.

Click the banner to get your hands on these posters. They’re child-safe, laminated, and arrive flat with free shipping! Enjoy! 😉

My Physics Posters, with Free World Shipping!

My Physics Alphabet Poster Set of 4 in BLUE My Physics Alphabet Poster Set of 4 in PINK

Give your children a head-start in Physics with this set of four colourful Physics Alphabet Posters. Show them your love of Science and get them interested at a very young age.

They’re child-safe, laminated, and arrive flat with free shipping!

Click below to get your hands on a complete set. All major credit cards are accepted.

 

Enjoy! James 🙂

Poster Prints Now Available

jameskennedymonash poster selection

I’m obsessed with print. I love typefaces, I care about using the right quality paper and inks, and I’m fussy about alignment, kerning and line spacing. And that’s why I decided to sell “Ingredients” poster prints.

I’ve got one of each of these prints, and—Wow!—they look so much more gorgeous in real life than on-screen.

Ordering prints is a less formal affair than the T-Shirt Store—just cover my costs via PayPal and I’ll get the prints on the way to your address within 24 hours. Click the Order Prints tab in the website’s ribbon to get your hands on some of these “Ingredients” prints.

Oh—and they’re cheap. Just $10 each and worldwide shipping is available 🙂

Order one to help spread the word. I’ll even sign them if you like 😉 James