Tag Archives: teaching

Turn Off Social Media While Studying

A new survey shows that social media is the biggest distraction students face while studying
A new survey by Stop Procrastinating shows that social media is the biggest distraction students face while studying

The leading internet blocker, Stop Procrastinating, has announced that 64% of US students have cited online distractions such as social media as a hindrance to their productivity. Facebook, Twitter, Snapchat, shopping websites and YouTube were among the sites that students found the most distracting.

Fear of Missing Out (FOMO)

Nearly all of the students who responded in the survey referred to a ‘fear of missing out’ (FOMO), which is the anxiety that people experience when they believe that important events are happening without them. The anxiety arises from a perceived decrease in ‘popularity’ if they’re not up-to-date with the latest happenings in their social circle. Teenagers are particularly susceptible to FOMO, and 24-hour social media feeds such as Facebook and Twitter are exacerbating the problem. Students are constantly checking their social media feeds (sometimes a few hundred times per day) in order to keep up with the latest drivel happenings.

Interestingly, first year university students were the most affected. It’s possible that in first year (sometimes called “freshman year”), people’s social circles haven’t quite cemented since the upheaval of leaving high school. People are therefore more anxious and fear missing out on new friendships and events… so they gravitate towards social media.

Almost half students surveyed admitted to losing an hour each day to social media. Common Sense Media estimates the real figure (including traditional media such as TV) is more like 9 hours per day. That’s a lot of screen time, and it’s affecting students’ social lives, their grades and their sleep.

Over half of the respondents said they’d been stopped from writing an essay because they felt compelled to check social media at some point. Any issue that’s stopping half of our students from writing essays (or concentrating for any extended period of time) needs to be addressed urgently.

This problem needs to be addressed urgently

The level of distraction today is unprecedented. We all carry televisions and music players in our pockets. I got in touch with Tim Rollins, the director of Stop Procrastinating, who said:

“We have made Stop Procrastinating free today in order help students to beat their Internet distractions and boost their performance in their studies. The Internet, social media, emails are pervasive and eating into our quality time. We need urgently to put ourselves back in control.” – Tim Rollins

Software is one of the tools that can help students get the lasting willpower they need to overcome FOMO and get back into studying. Here are my tips for eliminating distractions while studying.

Tips for distraction-free studying

  1. Delete all the Facebook apps from your phone
  2. Study with your phone in aeroplane mode
  3. When using your desktop, use the Stop Procrastinating app to limit your access to social media sites.
  4. Study without music. All the research says it doesn’t help.
  5. Don’t eat and study at the same time.
  6. Drink only water while you’re studying.
  7. Sit upright while studying: don’t study laying in bed or leaning back on the couch.
  8. Have a goal for each study session. Write it down and work until you’ve completed it (e.g. make notes on all 6 types of acid/base chemical reactions with examples)
  9. Study in a location that you never use for relaxation… the library is a great choice. Most students can’t study in their bedroom because they usually relax there.
  10. Limit the number of Facebook friends to 30. Delete all the others: I understand this takes some courage, but you probably don’t know them anyway! Their unimportant updates distract you from studying.

Stop Procrastinating is an Internet blocking and productivity application compatible with OS X and Windows. It allows users the option to block the Internet for a period of time in three ways, depending on how much self-discipline they have.

Combining Chemicals And Students Safely

Chemistry lab. Image supplied by National Laboratory Sales
Image supplied by National Laboratory Sales

In science education, chemistry is one of the disciplines that involves regular hands-on work in a laboratory. While teaching students the intricacies of chemistry presents no exceptional risk, the very real dangers posed by many chemicals demand a higher level of safety consciousness and preparedness. This general overview outlines sensible security precautions for high school and college chemistry labs.

The Importance Of Documentation

Fortunately, in a classroom setting, all of the chemicals being used will be well understood. This means information on their potential risks is widely available. This information must be used to ensure that each substance used is treated with the proper respect for the dangers it poses.

The first source of information for any chemical is the label it carries. These always describe their hazards, but labeling may be incomplete. A more authoritative source for hazard information is the material safety data sheet (usually referred to as an MSDS) for the substance. A comprehensive reference collection of MSDSs is an integral part of every laboratory, and this collection needs to be freely available to all teachers using the classroom’s chemical supply.

Equipment And Facilities

At the high school or college level, chemistry experiments demand their own dedicated laboratory spaces. These labs should meet all state and national safety requirements and cannot be used for teaching other subjects. Even the scheduling of laboratory use must be geared towards safety. Adequate free periods must be included every day for cleaning the lab and disposing of chemicals.

Chemicals need a dedicated, lockable storage room equipped to contain them safely. A prep room is also required for teachers to use. This needs equipment similar to the lab room albeit on a smaller scale. For all three of these spaces, ventilation is a critical concern. Ventilation hoods should be used in the lab itself and all of the air removed from the lab must be vented outside.

Full safety equipment needs to be available for everyone in the laboratory while chemicals are in use. This includes both permanent safety facilities (e.g. eyewash stations, first aid kits, etc.) and personal protective equipment (PPE), including goggles. Goggles for use in chemistry labs must conform to stricter standards than other forms of eye protection to ensure that they protect against both flying debris and liquid splashes.

Planning And Preparing

Every chemistry lab needs thorough safety plans for both general and specific chemical risks. While standardized materials including the safety documentation discussed above can be used to prepare safety plans, each teacher responsible for leading classes in the lab has a responsibility to set out his or her own safety measures.

Customized safety preparations should take the specifics of the facility and the coursework into consideration. Methods for calling for help, evacuating the lab, and documenting incidents will vary based on the layout of the facility and its resources. By designing their own safety plans, teachers will be better prepared to enact them in the event of an accident.

The Teacher’s Role

A chemistry teacher has many responsibilities beyond instruction and safety planning. One of the most important of these responsibilities is teaching his or her students to share a healthy respect for the hazards posed by chemicals. Teaching and testing them on basic safety precautions and lab-specific emergency procedures is just a start.

Students should learn to understand the intricacies of chemical labeling before working with hazardous chemicals. (For example, the terms danger, warning, and caution are each distinct, indicating decreasing levels of risk.) At the college level, where students may be working independently and designing their own experiments, teaching them to read the MSDS is strongly recommended. For younger students teachers can often make use of intermediate-level warning documentation (e.g. CLIPs, Chemistry Laboratory Information Profiles) to give them adequate chemical reference materials.

Keeping students safe in the laboratory is not a difficult job. It requires a heightened sense of awareness and an amount of preparation commensurate with the hazards posed by the chemicals involved. When preparedness is combined with proper facilities, equipment, and training, schools labs can be safe places to learn through direct experimentation with all but the most dangerous of chemicals.

Whether you’re building a new Lab or upgrading your existing one, you will find a remarkable selection of Casework, Workstations, Fume Hoods and related lab products at National Laboratory Sales.

(Almost) Nothing is Truly ‘Natural’ – Part 4

Cezanne nothing is natural fruit and vegetables painting still life
Nothing on this table is natural – not even the fruits. The Basket of Apples by Cézanne

Corn isn’t ‘natural’

In 2014, I created a series of infographics to help convey this message. Corn, for example, used to be a spindly grass-like plant called teosinte, which Native Americans farmed and bred through artificial selection until it resembled the yellow corn of today.

In 9000 years, sweetcorn has become 1000 times larger, 3.5 times sweeter, much easier to peel and much easier to grow than its wild ancestor. In the 15th century, when European settlers placed new selection pressures on the crop to suit their exotic taste buds, the corn evolved even further to become larger and multi-coloured. Corn no longer resembles the original teosinte plant at all.

Watermelon isn’t ‘natural’

Watermelon began as a hard, bitter fruit the size of a walnut. It caused inflammation and had an unpalatable bitter taste. Thousands of years of artificial selection (unintentional genetic engineering) have resulted in a modern watermelon that bears no resemblance to its African ancestor. Modern (artificial) watermelons are sweeter, juicier, more colourful and easier to grow than their ancestral varieties.

Peaches aren’t natural, either

Peaches used to be hard, cherry-sized fruits with giant pips. Like corn and watermelon, peaches became larger, sweeter and juicier over thousands of years of inadvertent genetic engineering.

Bananas, wheat, pigs and all farmed animals and plants are not natural

Before agriculture, carrots were white and spindly. Wheat was tall and scrawny with little calorific value. Apples were tiny and sour with giant pips (like crab-apples today). Strawberries were tiny, bananas had stones in them, and pigs were viscous creatures with tiny backsides that made for a not-so-delicious ham. Cows didn’t produce much milk (just enough for their own calves) and chickens were skinny little creatures that laid eggs weekly rather than daily. Every species that’s ever been farmed by humans has been genetically modified over time as a result.

I keep making this point because our ancestors deserve credit for their hard work: they toiled in the fields for thousands of years to breed plants and animals that are suited to our modern tastes and lifestyles. For modern humans to call the results of our ancestors’ hard work ‘natural’ is an insult to the millions of ancient farmers who worked so hard to produce them.

Engineers (including genetic engineers) know that humans have toiled for millennia to change nature and suit it to our own needs – animals became tamer and meatier, and plants started producing more edible portions. I want to counteract the misconception that humans encountered nature in a ‘pristine’ state.

[ancient humans] toiled in the fields for thousands of years to breed plants and animals that are suited to our modern tastes and lifestyles. For modern humans to call the results of their hard work ‘natural’ is an insult to our ancestors. – Animal Pharm (documentary)

I show the above documentary my Year 10 Science students to demonstrate what is currently being produced using genetic engineering techniques. The video explains all the concepts mentioned in this article and is accessible for and educated audience of any age.

This post is part 4 in a weekly series on chemophobia. Next week, we’ll look at the psychology behind chemophobia.

On the $$$ fuelling Chemophobia – Part 3

We’ve already asserted that chemophobia is an irrational psychological quirk that gained traction after the environmental movement of the mid-1960s. But I don’t want to make such allegations without proof. In part 3 of this weekly series on chemophobia, I’ll show you some of the irrational conclusions that chemophobia leads us to make, and the psychology that lies behind them. We’ll also look at some examples of companies that are using chemophobia with maximum leverage to inflate the prices of foods and skincare products in stores.

People perceive products with moral claims on the packaging as more effective than those without

Boyka Bratanova at Abertay University offered participants a choice between two cookies: one was normal, and another was labelled “organic/locally-produced/carbon-neutral”. The cookies were otherwise identical.

people believe these organic cookies taste better

Amazingly, when the participants were asked specifically to evaluate the taste of each cookie, they consistently rated the ‘morally-superior’ cookies as more delicious. Bratanova’s study confirms Meng Li’s hypothesis (discussed last week) that people confuse moral claims with actual superiority. Manufacturers are taking advantage of this psychological trick by writing meaningless claims of moral superiority such as “natural”, “pure” and “free from {insert harmless ingredient here}” on their product labels to justify price increases at the point of sale.

The global market for ‘natural’ and ‘organic’ personal care products is projected to reach US$16 billion by 2020. But are these ‘natural/organic’ products really any better than their non-organic equivalents? Evidence suggests not.

Take Gaia Natural Baby Skin Soothing Lotion, for example, which sells for 4.4 cents/mL in Coles. A comparable ‘normal’ product, Johnson’s Baby Lotion, sells for just 1.7 cents/mL. Gaia can charge its customers 2.5 times the price compared with traditional Johnson’s Baby Lotion largely because it claims “Pure, Natural, Organic” in large text on the front of the bottle. Unfortunately, these claims aren’t actually true (and this product was recalled in December 2015 because of its ‘inaccurate product label’; read more here).

Gaia makes these three misleading claims on all of its products
Gaia makes these three misleading claims on all of its products

“Pure” is a claim reserved for single-ingredient products only

By definition, mixtures such as baby lotion cannot be ‘pure’. Pure substances contain only a single ingredient (e.g. pure salt, pure white flour, pure cane sugar and pure spring water). No cosmetic or skincare product should ever be labelled ‘pure’.

“Natural” products must be sold as they’re found in nature

Very few products are truly natural. Not only is the definition vague, but there are no enforceable regulations on its use in Australia, New Zealand or the US. The Food Standards Agency in the United Kingdom proposes some guidelines: “made from natural ingredients that have not been interfered with by [humans]”. Again, it’s impossible for any cosmetic or skincare product to be totally natural. All cosmetics and skincare products have been ‘interfered with’ by humans, and they the vast majority of skincare products contain artificial ingredients.

“Organic” only makes sense when applied to foods

Adding a couple of drops of ‘organic’ ingredients into your product to justify writing “organic” on the label should be illegal. But that’s exactly what Gaia has done: the ingredients certified ‘organic’ in their Natural Baby Skin Soothing Lotion amount to approximately just 7% of the product.

Because ‘organic’ is a farming technique, farmed foods are the only products that should ever be labelled ‘organic’. It’s impossible for cosmetics and skincare products to be ‘organic’ because many of the ingredients (even in self-proclaimed ‘natural’ brands such as Gaia) are artificially synthesised rather than grown.

Consumers are being tricked into paying a higher price for a product that isn’t necessarily superior.

Natural chemicals can be harmful, too (and the most harmful compounds on Earth are all natural)

Gaia’s “all-natural” baby lotion was recalled because it contained undisclosed allergens. Nine out of the top ten most dangerous compounds on Earth are naturally-occurring. When it comes to skincare, synthetic compounds are often gentler and more suited to their purpose than are their natural counterparts.

Natural compounds are sometimes far more dangerous than synthetic ones. Blue, artificial compounds; green, naturally-occurring compounds.
Natural compounds are sometimes far more dangerous than synthetic ones. Blue, artificial compounds; green, naturally-occurring compounds.

Some studies even suggest that crops on organic farms produce more pesticide within the leaves in order to protect themselves from increased rates of insect predation. Some of these natural pesticides are actually more potent skin irritants than the synthetic pesticides used in conventional farming methods.

In addition, organic crops can be sprayed legally with many pesticides, some of which are potent irritants. Lists of pesticides approved for use on organic farms can be found here and here. There exists a misconception among consumers that organic produce is ‘pesticide-free’, which is a concern considering that ‘no pesticides’ is the most common argument heard in favour of buying organic produce.

Consumers are being tricked into paying a higher price for a product that isn’t necessarily superior, and still might contain harsh (natural) compounds that irritate their skin.

Many brands are making these misleading claims…

Some of Sukin's "fragrance-free" products contain fragrances such as sesame oil and rose hip oil
Some of Sukin’s “fragrance-free” products contain fragrances such as sesame oil and rose hip oil
Envirocare's hair cleanser made extreme 'natural' claims before it was recalled by the Australian Government. Source: recalls.gov.au
Envirocare’s hair cleanser made extreme ‘natural’ claims before it was recalled by the Australian Government. Source: recalls.gov.au
Mustela's milky bath oil claims to be 'natural' but contains mostly artificial ingredients
Mustela’s milky bath oil makes a vague claim about having ‘natural ingredient [sic]’ but contains mostly artificial ingredients e.g. PEG-6 isostearate and propylene glycol
Sukin makes claims that aren't even relevant to the product being sold. Moisturisers are labelled "SLS-free", for instance. SLS should never be in a moisturiser!
Sukin makes claims that aren’t even relevant to the product being sold. Moisturisers are labelled “SLS-free”, for instance.
Sometimes, the ingredients labels make no sense whatsoever. They've put a 'word salad' instead of actual ingredients on this one. This product should be recalled or over-labelled immediately.
Sometimes, the ingredients labels make no sense whatsoever. They’ve put a ‘word salad’ instead of actual ingredients on this one. This product should be recalled or over-labelled immediately.

Update: Gaia has recalled the product above due to its ‘inaccurate product label’

Their signature baby lotion is being withdrawn from sale due to an undisclosed ingredient labelling problem… Gaia was unable to provide any further information and declined to comment on the issue.

Gaia has recalled the product mentioned in this article due to the presence of undisclosed allergens
Gaia has recalled the product mentioned in this article due to the presence of undisclosed allergens. Source: recalls.gov.au

On the Origins of Chemophobia – Part 1

800px-the_earth_seen_from_apollo_17
“The Blue Marble” is a famous photograph of the Earth taken on December 7, 1972, by the crew of the Apollo 17 spacecraft en route to the Moon.

The rise of the environmental movement is most often attributed to the publication of Rachel Carson’s Silent Spring in 1962, which demonised chemicals as it introduced them to the public:

“Chemicals are the sinister and little-recognised partners of radiation entering into living organisms, passing from one to another in a chain of poisoning and death” – Rachel Carson’s Silent Spring, 1962

Later that decade, the Apollo missions and the six moon landings between 1969 and 1972 gave us a new perspective of planet Earth that was so profound that we felt a sudden compulsion to protect its natural beauty. Watch Neil deGrasse Tyson argue this point below.

In 1970, we are still going to the moon, we are still going until 1972, so watch these sequence of events. In 1970, the comprehensive Clean Air Act is passed… Earth Day was birthed in March 1970. The EPA was founded in 1970… Doctors Without Borders was founded in 1971… DDT gets banned in 1972, and we are still going to the moon. We’re still looking back at Earth. The clean water act 1971, 1972 the endangered species act, the catalytic converted gets put in in 1973, and unleaded gas gets introduced in 1973… That is space operating on our culture and you cannot even put a price on that. – Neil deGrasse Tyson in April 2012

Together, Rachel Carson and the Apollo missions made the public in Western countries quickly aware of the Earth and its natural beauty. Humans were portrayed as selfish destructors of a planet that was supposedly most ‘beautiful’ when in its ‘natural’ state. The field of toxicology was spawned in wake of this concern, and had the goal of analysing the toxicity of different chemicals on humans and the environment. As the first edition of Human and Experimental Toxicology stated:

“Politicians cannot be expected to come to rational and acceptable decisions without adequate impartial and objective information, and toxicologists have grave responsibilities to produce such information”. – Human and Experimental Toxicology

While the field of toxicology accumulated a wealth of scientific evidence about ‘chemicals’, this evidence largely hasn’t trickled down to the public and certainly hasn’t allayed their fears. There remains a lingering skepticism about chemicals, especially artificial chemicals, which some people still feel are more harmful than those found in nature.

Take the Think Dirty iOS app, for example, which gives cosmetic ingredients a safety rating out of 9. According to the app’s creators, “Fragrance” gets the worst possible rating (9), while “Natural Fragrance” gets the best rating (1). Black-and-white ‘natural’ vs ‘artificial’ decision-making such as this is completely unfounded and ignores toxicological evidence. This kind of thinking is misleading, has no scientific basis and sometimes causes consumers to make harmful conclusions – no matter how benign their intentions. (More on this in future posts.)

This simplistic thinking is a remnant of the environmental movement back in the 1970s: that ‘selfish’ humans were destroying a ‘pristine’ planet Earth. While the ‘natural/good’ vs ‘artificial/bad’ dichotomy was an effective solution to short-term environmental problems of the time, this black-and-white thinking is actually leading people to make bad decisions today. We can no longer assume that “natural” is always “best”: the issue is actually far more complex than that. Toxicological evidence needs to be made public and easy to digest so that consumers can make more enlightened decisions.

This post is part 1 of a weekly series on Chemophobia. More next week.

Neil deGrasse Tyson – Space as Culture transcript

All-Natural Banana Poster Series PDFs

Ingredients of an All-Natural Banana and other fruits set $99
New for 2016: Click to download free PDFs of all twelve All-Natural Posters

It’s been two years since I posted the All-Natural Banana. Motivation behind this poster was to dispel the myth that “natural = good” and “artificial = bad”. It’s been a very successful project. It’s spawned 11 more “Ingredients” posters, a successful clothing line, and has sold thousands of print copies worldwide via this website.

Online news portal io9 then published a news story about the All-Natural Banana, which was followed in quick succession by articles in Vox, Forbes, Business Insider, the New York Times and more.

The All-Natural Banana has now received over 700,000 views via this website and millions more views via social media.

From today onwards, you can download the original PDF artworks for free. They come with a Attribution-NonCommercial 4.0 International Creative Commons License, which means that you can share them, print them and modify them as much as you like for non-commercial purposes only.

I’ll be following this up with an article on the ‘Origins of Chemophobia’ next week. Subscribe to this website below or subscribe via my Apple News channel here.

Click here to download the whole poster set.

Creative Commons Licence
All-natural Banana by James Kennedy is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at https://jameskennedymonash.wordpress.com/2013/12/12/ingredients-of-an-all-natural-banana/.

Kennedy Rainbow Cell

Kennedy Rainbow Cell electrolysis chemistry demonstration initial setup aerial view
Initial Kennedy Rainbow Cell setup

Demonstrate electrolysis with an electrolytic cell in a petri dish.

Materials

  • 1 × Large petri dish
  • 1 × DC Power pack
  • ~50 mL Distilled water dH2O(l)
  • ~3 g potassium nitrate powder KNO3(s)
  • 2 × Graphite electrodes
  • 2 × Wires with crocodile clips
  • 1 × Clamp and stand
  • 1 × Very strong static magnet
  • 1 × Roll of sticky tape (any type)
  • ~10 drops of universal indicator
  • ~50 mL dilute HNO3(aq)
  • ~50 mL dilute KOH(aq)
  • 1 × Spatula

Method

  1. Place petri dish on clean, light-coloured bench and add distilled water until it is two thirds full
  2. Add ~10 drops of universal indicator and observe the colour.
    Q: What pH is the distilled water? (You’ll be surprised!)
    Q: Why is/isn’t the colour green?
  3. Add ~3 g of potassium nitrate to the petri dish and stir using a spatula until completely dissolved
  4. Adjust the pH of the distilled water carefully using the nitric acid and potassium hydroxide as required. Try to make the universal indicator colour green (as pictured) ~pH 7
  5. Attach one electrode to each of two wires using crocodile clips
  6. Dip each graphite electrode into the green solution at opposite sides of the petri dish. Hold these electrodes (and wires) in position by in position by sticky-taping each wire to the surface of the workbench
  7. Demonstrate the strength of the magnet by attaching it to the clamp. Carefully, clamp the magnet into the clamp and position the magnet 2 mm above the surface of the green solution
  8. Ensuring the power is turned off, very carefully, attach the wires to the DC power pack according to the manufacturer’s instructions
  9. Turn the voltage to zero (or very low) and turn on the power pack
  10. Turn the voltage up slowly (12 volts worked well) and observe any changes you might see in the Kennedy Rainbow Cell

Extensions

  • Turn off the power pack and stir the solution. Explain why the colour goes back to being green. (If it’s not green, explain that, too!)
  • Turn the magnet upside-down (TURN OFF THE POWER FIRST)
  • Reverse the polarity of the wires
  • Use AC current instead of DC
  • Use different indicators
  • Why would using NaCl(aq) be dangerous in this cell?
  • How can you maximise the swirling?
  • How can you make this experiment much more epic?

Click to download Kennedy Rainbow Cell worksheet (PDF)

Safety considerations

  • Make your own risk assessment before carrying out this experiment
  • The strong magnet is capable of attracting both wires to itself. Don’t be touching the exposed parts of the crocodile clips when this happens. If this does happen, immediately turn off the power pack and fix the problem. Secure the wires with more tape. Don’t touch the electrodes while the Cell is operating.
  • Don’t use chloride salts or hydrochloric acid in this experiment. The voltages involved can cause the production of toxic chlorine gas if sodium chloride is used. Use nitric acid and potassium nitrate instead.
  • Make sure the wires don’t touch each other.
  • Again, make your own risk assessment before carrying out this experiment

Video

Disclaimer

This cell is potentially dangerous. I accept no responsibility for and loss, damage or injury caused by the operation of a Kennedy Rainbow Cell. If you’re under 18, always get adult permission before you make this type of cell.

Top Tips for University

Macquarie-University-Lecture-Theatres-27.jpg
Students attend a lecture at Macquarie University, Australia

You’ve graduated and you’re waiting for VCE examination results day on December 14th, 2015. In the meantime, you can rest, celebrate, and get ready for university.

When I completed my master’s degree at Cambridge University in 2010, I took note of the habits and traits that helped me to succeed in university. I didn’t maintain all of them all the time – rather, I fluctuated between doing these things and doing the exact opposite – but the process has taught me which character traits and mental attitudes are necessary for academic success in university. Here are my top ten tips for university. Each one of these tips is written carefully from my personal experience.

  1. If you have a strong opinion on something, be prepared for it to change COMPLETELY several times before graduation. That’s how we grow and learn.

  2. Always know where you’re going from now on. Always have a goal and you’ll never feel lost.

  3. Ask for help from professors or lecturers if you don’t understand something. (They will not reach out to you in university.)

  4. Read all the textbooks on the reading list. Read the whole books (not just the required chapters) if you have time.

  5. Textbooks are always more important than academic papers despite what your lecturers tell you. Read the textbooks first.

  6. Always make notes as you read.

  7. Arrive early to lectures to get the best seats and to make friends with like-minded, punctual and keen students before the lecturer arrives.

  8. Socialise carefully. Will joining this particular group/team help you to grow as a person? Some groups will help you grow; some will drag you down. Choose carefully!

  9. Don’t be too stubborn but don’t be too easily influenced, either. Be in the middle.

  10. Smile! 😃

Last-Minute Tips for the VCE Chemistry Exam

exam-hall-empty
You’ll be sitting here tomorrow.

Only positively-charged fragments from mass spectrometers produce a peak on the spectrum. Uncharged free radical fragments are not detected because they lack a positive charge.

Weak acids with a lower Ka value are the weakest… this means that they ionise to a lesser extent when in aqueous solution, giving rise to a lower concentration of available H3O+(aq) and a higher pH.

The conversion of triglycerides (a type of ester) into biodiesel (another type of ester) is called transesterification.

The covalent bonds between deoxyribose and phosphate groups in DNA form a group of atoms called a phosphodiester group.

Ether bonds and glycosidc bonds are not the same. Ether bonds are C-O-C. Glycosidic bonds are a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

Amide groups and peptide groups are not the same, either. Amide groups are CONH. Peptide groups are CONH between amino acid residues in a polypeptide chain. Nylon, for example, has amide groups (CONH) which aren’t called peptide groups.

Ether: C-O-C
Ester: COO
Amine: NH2
Amide: CONH

The molar mass of any amino acid without its Z-group is 74 gmol-1.

The molar mass of glucose, fructose and galactose (all monosaccharides) is 180 gmol-1. By coincidence, aspirin is also 180 gmol-1.

The molar mass of sucrose is 342 gmol-1 because (180*2)-18=342.

In general, energy is required to break bonds. Energy is released when bonds are formed.

Use the formula C-(H/2) to find how many C=C are present in a fatty acid (only works for fatty acids).

Use the shortcut formula (Ka/[acid])^0.5 to find % ionisation of a weak acid.

Use -log(Ka) to find the exact pH at the end point of an indicator.

Use the quick titration formula for rapid multi-choice titration questions: c1v1/ratio1 = c2v2/ratio2

A hydrogen bond is an intermolecular bond that forms between O-H groups. The covalent bond between the O and the H is not a hydrogen bond.

Can you write the half-equation for the reaction occurring at the anode in an ethanol-oxygen fuel cell with an alkaline electrolyte? Tip: start by writing the known reactants and products then use KOHES(OH) to balance your equation.

The products of a titration determine the pH at the equivalence point. For example, the the pH at the equivalence point in a titration between CH3COOH(aq) and NaOH(aq) is around 8.5 because at equivalence point, only products are present: Na+(aq) and CH3COO(aq). The ethanoate ion (CH3COO(aq)) is a weak base, which makes the solution produced slightly basic.

If you have absolutely no clue in the multiple choice sections, pick C. In the last 4 years of VCE Chemistry examinations, C has been correct 50% more of the time than B.

The multiple choice questions really do get harder towards the end. I’ve done the statistics.

Use your reading time wisely. During reading time, read all the questions with the following idea in mind: “how would I do this question?” without actually doing the question.

Bring sharp pencils.

Sleep early tonight (before 9pm). At this stage, getting enough sleep is far more important than revising those tiny details that may or may not come up in the examination.

All the best tomorrow.

Test Yourself Here on the Hardest VCE Chemistry Questions Ever Asked

VCE Chemistry Hardest Multiple Choice Questions Ever Asked Great Revision Tool
Click the image to begin Quiz 1

Great revision tools are available here. All the questions in these quizzes are real VCAA Chemistry questions extracted from Section A of past Chemistry papers.

Quiz 1
Answers

Quiz 2
Answers

Quiz 3 (long)
Answers

8-Page VCE Chemistry Formula Booklet Just $55

VCE Chemistry Formula Booklet INSIDE
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.

Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring.

There are 76 formulae in total, at least 10 of which are original. Orders are shipped on A3 paper, stapled along the spine and folded to an A4-sized booklet that resembles the VCAA Data Booklet.

Orders from schools, students and tutors are all welcome. Price includes free international delivery and 10% voucher for the T-shirt store.

Order your copy now by clicking here

VCE Chemistry Formula Booklet FRONT
Click to purchase a printed copy for just $55

Revise What’s HARD: Focus on Electrolysis

VCAA VCE Chemistry how difficult is each topic
Click to download PDF version. Numbers in parentheses denote Chapter numbers.

The VCE Chemistry examination is only 22 days away. As you complete at least one practice paper each day and correct them ccording to your revision timetable, you’ll be finding that you’ve already mastered certain topics while others remain difficult.

Patterns emerge in student readiness: each year, electrolysis is the worst-studied topic on the course. Because VCAA has a reputation for asking questions on topics that students repeatedly got wrong in previous years; I decided to test this hypothesis by getting real data from recent examination reports and displaying it on a scatterplot of:

  • how difficult each topic is (% of marks lost) on the x-axis
  • how often the topic is asked (marks per paper) on the y-axis

The results were fascinating. While it’s impossible to say with any certainty which topics will be on the examination this year, previous years’ examination papers have placed more emphasis on the difficult topics (electrolysis, Ka, redox and biofuels). Focus your revision on these topics again this year.

Conclusion: Focus your Chemistry revision this week on your least favourite topics… those topics will probably be worth more marks in the examination!

Free VCE Chemistry Progress Tracker Wall Chart

Chemistry LADDER progress chart for VCE students
Click to download PDF version (A3 size)

Track your progress in VCE Chemistry with this A3 size progress tracker. Cross out or colour in each box as you complete it, and write your scores in . Start at the bottom (highlighted) and work your way upwards.

A ‘minimum expected level of examination preparation’ of 26 examination papers is labelled on the chart. Write your percentage scores in each of the boxes as you mark each paper. When you’re achieving past/practice examination scores concordantly above 90%, you’re ready to sit the VCE Chemistry examination.

For more Study Tools for Year 12 students, click here.

How they did it: Tips from 99.95 students

Tips from Izabella Bratek at Academyplus.com.au

1. Develop excellent study skills. Cultivate ideal study habits such as waking up early, reading your notes before school, doing all homework on time and studying even when there’s no homework set.

2. Stay committed and know what you want and WHY. People who know why they do what they do are far more likely to persist and put in the huge number of hours required to excel at that particular skill. All successful people were driven by a higher. Find your why and you’ll feel more motivated to study VCE.

3. Keep motivation levels high and consistent throughout the year. Remind yourself constantly why you’re studying the VCE subjcets you’ve chosen.

4. Do not “over-indulge” in VCE tutoring. Your tutors and teachers can only take you so far. The highest-achieving students are those who are self-motivated: they push themselves and study even when nobody asked them to. Become self-motivated and use your tutoring time wisely to maximise your performance in VCE exams.

Tips from Alastair Weng at Cloudninetutoring.com

1. Maintain good study habits. Get more information on study habits here.

2. Keep a balanced life. Stay healthy by socialising and exercising regularly. Don’t sacrifice health for your ATAR: a healthy body helps maintain a healthy mind.

3. No regrets. Remember that the sacrifices you make today will pay off in the future.

Tips from Akhil on the BoredofStudies.org forum

1. Stay a whole module ahead.

2. There are two things you need to do: make great notes and do practice questions. 

3. Build on your notes from external sources (other people’s notes and the textbook)

4. Mark your questions – or get them marked! Akhil says that while it’s an excellent learning exercise to practice marking questions by yourself, it’s also necessary to get your practice papers and Checkpoints questions marked by a teacher or tutor because they’ll be more vigilant with sticking to the marking scheme and can pick up slight errors in wording that are easy to miss if you mark your own work.

Want more? Try How to Get Ahead in VCE Chemistry

Do you know of any more study tips? Are there any crucial tips missing from this list? Post them into the comments section below.

Chemistry Task Words

Chemistry VCE task words verbs for Chemistry education and instruction
Click for a PDF version of these task words

RTQ! This is one of the most common sources of errors in Chemistry examinations. When I sat 2014’s VCE Chemistry examination, I lost 5 marks in the paper for not reading the question! Your teachers will have told you to ‘read the question’ or ‘RTQ’ as well.

Task word errors can be avoided in two ways. First, learn the exact meanings of each task word. This is particularly important for EAL Chemistry students. Second, highlight the task words in a question (just as you would highlight the important information in a complicated titration question).

For example: “Explain how the different intermolecular forces in butane and butan-1-ol give these two compounds different boiling points. 3 marks

In your answer, you will need to explain the effect of intermolecular forces. This means you’ll need to write why the butan-1-ol forms hydrogen bonds (due to the polar nature of the hydroxyl group) whereas butane forms only dispersion forces with its surrounding molecules (due to the non-polar nature of the molecule). You’ll also need to make some kind of comparison (which is hinted at by the word, ‘different’) in order to get all 3 marks.

Example 3-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule. Hydrogen bonds are stronger than dispersion forces and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.

One mark would be awarded for each of:

  • Explaining the intermolecular bonding of butan-1-ol
  • Explaining the intermolecular bonding of butane
  • Comparing the relative strengths of the two and relating this to boiling points

In a 2-mark answer, the student might omit the comparison step:

Example 2-mark answer: “Butan-1-ol forms intermolecular hydrogen bonds with the surrounding molecules due to the polar nature of the hydroxyl group (O-H bond). Butane forms only dispersion forces with its surrounding molecules due to the non-polar nature of the molecule.”

In a 1-mark answer, the student might only mention one of the two molecules, or might only make a comparison without explaining why these two compounds display different types of intermolecular forces.

Example 1-mark answer: “Hydrogen bonds formed by butan-1-ol are stronger than dispersion forces formed by butane and thus require more energy to break. This results in a higher boiling point for butan-1-ol than for butane”.

In that latter example, the student didn’t explain the reasons for the differences in intermolecular bonding – they merely stated them.

Task word Chinese Description
Calculate 计算 Write the value of a number (include equations)
Compare 比较 Write the similarities and differences between
Evaluate 评价 Write arguments for and against
Define 确定 Write the exact meaning of
Describe 描述 Write details about (a thing or a process)
Discuss 讨论 Write reasons for and against
Distinguish 区分 Write the differences between two or more things
Explain 讲解 Write details to give the reader an understanding of
Find/State Write (sometimes by doing calculations)
Identify 鉴定 Write which one
Illustrate 说明 Write something and draw a labelled diagram as well
Indicate 表明 Write which one (usually on a given diagram)
List 列出 Write a list
Outline 轮廓 Write a summary
Suggest 建议 Write a reason for a phenomenon
To what extent 到什么程度 Write whether a reaction is complete (→) or incomplete (↔).

Watch task words in the examination… and make sure you answer the question!

3 Things You Take With You from Year 12

1) Friendships

Memories and connections are some of the most valuable things you’ll take with you from Year 12. Keep in touch with as many people as possible both officially (using alumni networks) and unofficially (using social media). People move in different directions after graduation and you’ll be surprised at how your friendships evolve, too: classmates who were mere acquaintances during school might become very close friends in five years’ time. Keep in touch with all your classmates to make sure you don’t miss out on these future business connections, too. You might even meet again one day sitting opposite each other at a job interview!

2) ATAR

Remember that your ATAR is only a means to a much more meaningful goal: it’s the key to a university course of your choice. Strive for an ATAR that’s high enough: there’s no need to stess yourself out by aiming for a ‘perfect’ score of 99.95. Your ATAR is like a disposable key: it gets you into university but doesn’t help you while you’re there. Nobody asked me what my A-level results were throughout my undergraduate years at Cambridge. High-school results simply weren’t important.

3) A Relentless Work Ethic

You’ve worked harder in Year 12 than you’ve ever worked in your life. If you want to be successful, you’ll have to maintain this level of hard work – or even increase it – to accomplish your goals in life. You’ve learned the difficult way that in Year 12, going to school and doing all the required homework isn’t enough. You’ve figured out in Year 12 that you have to spend hours reading the textbook by yourself, doing practice question sets that aren’t on the course, and making summary notes that your teacher will probably never see in order to get a high grade.

The relentless work ethic you’ve garnered will help you to conquer bigger obstacles in the years that follow. Give every major event in your life at least as much passion, dedication and preparation that you gave to your VCE examinations and you’ll be sufficiently prepared for the challenges that await you in the future. VCE is pre-season training for life.

Is there anything I’ve missed from this list? Is an ATAR more than just a “key to a university course”? Let us know in the comments section below.