On the $$$ fuelling Chemophobia – Part 3

We’ve already asserted that chemophobia is an irrational psychological quirk that gained traction after the environmental movement of the mid-1960s. But I don’t want to make such allegations without proof. In part 3 of this weekly series on chemophobia, I’ll show you some of the irrational conclusions that chemophobia leads us to make, and the psychology that lies behind them. We’ll also look at some examples of companies that are using chemophobia with maximum leverage to inflate the prices of foods and skincare products in stores.

People perceive products with moral claims on the packaging as more effective than those without

Boyka Bratanova at Abertay University offered participants a choice between two cookies: one was normal, and another was labelled “organic/locally-produced/carbon-neutral”. The cookies were otherwise identical.

people believe these organic cookies taste better

Amazingly, when the participants were asked specifically to evaluate the taste of each cookie, they consistently rated the ‘morally-superior’ cookies as more delicious. Bratanova’s study confirms Meng Li’s hypothesis (discussed last week) that people confuse moral claims with actual superiority. Manufacturers are taking advantage of this psychological trick by writing meaningless claims of moral superiority such as “natural”, “pure” and “free from {insert harmless ingredient here}” on their product labels to justify price increases at the point of sale.

The global market for ‘natural’ and ‘organic’ personal care products is projected to reach US$16 billion by 2020. But are these ‘natural/organic’ products really any better than their non-organic equivalents? Evidence suggests not.

Take Gaia Natural Baby Skin Soothing Lotion, for example, which sells for 4.4 cents/mL in Coles. A comparable ‘normal’ product, Johnson’s Baby Lotion, sells for just 1.7 cents/mL. Gaia can charge its customers 2.5 times the price compared with traditional Johnson’s Baby Lotion largely because it claims “Pure, Natural, Organic” in large text on the front of the bottle. Unfortunately, these claims aren’t actually true (and this product was recalled in December 2015 because of its ‘inaccurate product label’; read more here).

Gaia makes these three misleading claims on all of its products
Gaia makes these three misleading claims on all of its products

“Pure” is a claim reserved for single-ingredient products only

By definition, mixtures such as baby lotion cannot be ‘pure’. Pure substances contain only a single ingredient (e.g. pure salt, pure white flour, pure cane sugar and pure spring water). No cosmetic or skincare product should ever be labelled ‘pure’.

“Natural” products must be sold as they’re found in nature

Very few products are truly natural. Not only is the definition vague, but there are no enforceable regulations on its use in Australia, New Zealand or the US. The Food Standards Agency in the United Kingdom proposes some guidelines: “made from natural ingredients that have not been interfered with by [humans]”. Again, it’s impossible for any cosmetic or skincare product to be totally natural. All cosmetics and skincare products have been ‘interfered with’ by humans, and they the vast majority of skincare products contain artificial ingredients.

“Organic” only makes sense when applied to foods

Adding a couple of drops of ‘organic’ ingredients into your product to justify writing “organic” on the label should be illegal. But that’s exactly what Gaia has done: the ingredients certified ‘organic’ in their Natural Baby Skin Soothing Lotion amount to approximately just 7% of the product.

Because ‘organic’ is a farming technique, farmed foods are the only products that should ever be labelled ‘organic’. It’s impossible for cosmetics and skincare products to be ‘organic’ because many of the ingredients (even in self-proclaimed ‘natural’ brands such as Gaia) are artificially synthesised rather than grown.

Consumers are being tricked into paying a higher price for a product that isn’t necessarily superior.

Natural chemicals can be harmful, too (and the most harmful compounds on Earth are all natural)

Gaia’s “all-natural” baby lotion was recalled because it contained undisclosed allergens. Nine out of the top ten most dangerous compounds on Earth are naturally-occurring. When it comes to skincare, synthetic compounds are often gentler and more suited to their purpose than are their natural counterparts.

Natural compounds are sometimes far more dangerous than synthetic ones. Blue, artificial compounds; green, naturally-occurring compounds.
Natural compounds are sometimes far more dangerous than synthetic ones. Blue, artificial compounds; green, naturally-occurring compounds.

Some studies even suggest that crops on organic farms produce more pesticide within the leaves in order to protect themselves from increased rates of insect predation. Some of these natural pesticides are actually more potent skin irritants than the synthetic pesticides used in conventional farming methods.

In addition, organic crops can be sprayed legally with many pesticides, some of which are potent irritants. Lists of pesticides approved for use on organic farms can be found here and here. There exists a misconception among consumers that organic produce is ‘pesticide-free’, which is a concern considering that ‘no pesticides’ is the most common argument heard in favour of buying organic produce.

Consumers are being tricked into paying a higher price for a product that isn’t necessarily superior, and still might contain harsh (natural) compounds that irritate their skin.

Many brands are making these misleading claims…

Some of Sukin's "fragrance-free" products contain fragrances such as sesame oil and rose hip oil
Some of Sukin’s “fragrance-free” products contain fragrances such as sesame oil and rose hip oil
Envirocare's hair cleanser made extreme 'natural' claims before it was recalled by the Australian Government. Source: recalls.gov.au
Envirocare’s hair cleanser made extreme ‘natural’ claims before it was recalled by the Australian Government. Source: recalls.gov.au
Mustela's milky bath oil claims to be 'natural' but contains mostly artificial ingredients
Mustela’s milky bath oil makes a vague claim about having ‘natural ingredient [sic]’ but contains mostly artificial ingredients e.g. PEG-6 isostearate and propylene glycol
Sukin makes claims that aren't even relevant to the product being sold. Moisturisers are labelled "SLS-free", for instance. SLS should never be in a moisturiser!
Sukin makes claims that aren’t even relevant to the product being sold. Moisturisers are labelled “SLS-free”, for instance.
Sometimes, the ingredients labels make no sense whatsoever. They've put a 'word salad' instead of actual ingredients on this one. This product should be recalled or over-labelled immediately.
Sometimes, the ingredients labels make no sense whatsoever. They’ve put a ‘word salad’ instead of actual ingredients on this one. This product should be recalled or over-labelled immediately.

Update: Gaia has recalled the product above due to its ‘inaccurate product label’

Their signature baby lotion is being withdrawn from sale due to an undisclosed ingredient labelling problem… Gaia was unable to provide any further information and declined to comment on the issue.

Gaia has recalled the product mentioned in this article due to the presence of undisclosed allergens
Gaia has recalled the product mentioned in this article due to the presence of undisclosed allergens. Source: recalls.gov.au

On the Pervasiveness of Chemophobia – Part 2

Bill Gates drinks water purified from sewage at Seattle's Omniprocessor plant
Bill Gates drinks water purified from sewage at Seattle’s Omniprocessor plant

Would you drink water that’s been purified from sewage? Bill Gates did:

“It’s water,” he says. “Having studied the engineering behind it… I would happily drink it every day. It’s that safe.” – Bill Gates

He’s talking about the Omniprocessor in Seattle, USA, which illustrates perfectly the prevalence of chemophobia in our society. The Omniprocessor takes sewage waste and purifies it into clean drinking water. The dried sewage is then combusted to power the plant, producing electricity that can be sold back to the grid. Essentially, it’s a free sewage disposal system that also gives you clean drinking water and a plentiful supply of electricity. Omniprocessors could be a huge income boost for farmers in developing countries.

The plant in Seattle was met with resistance. One study showed that 26% of survey participants were so disgusted by the idea of “toilet-to-tap” that they agreed with the statement: “sewage water could never be purified to such an extent that I would be willing to drink it”. Try it yourself: which glass of water would you rather drink?

We all feel a slight preference for the glass on the right. Chemophobia, an irrational psychological quirk, is more prevalent than you might think.
We all feel a slight preference for the glass on the right. Chemophobia, an irrational psychological quirk, is more prevalent than you might think.

If science tells us the purified sewage-water is perfectly clean, then why aren’t people comfortable with drinking it?

Instinct: Once contaminated, always contaminated

Paul Rozin at the University of Pennsylvania provides an explanation. He uses the term “contagion” to describe the perceived, permanent grossness that objects or substances acquire once they have touched something disgusting. No amount of purification can remove the ‘disgust factor’ that’s been acquired by the object. It’s purely psychological, and has no basis in science, but might have evolved as a useful behavioural adaptation that protects us from disease.

Mark Schaller at the University of British Colombia coined the phrase “behavioural immune system” to describe this phenomenon. It includes a suite of feelings and behaviours, including repulsion and disgust, that prevent us from eating contaminated food. It’s overly sensitive, and is at the root of many culinary taboos (e.g. don’t eat pork/prawn/insects).

All of this makes evolutionary sense: for millions of years of human evolution, we had no way of purifying food once it had become contaminated. We had no way of boiling water (and no fire) for 90% of human history. We had no modern medicines for 99% of human history, which made even small illnesses a horrifying, life-threatening prospect. Paranoia about cross-contamination has probably saved our species from extinction.

So why do some people see ‘synthetic chemicals’ as contaminants?

Science teachers are partly to blame. I tell my students never to eat in the lab because we’re fearful of contaminating the student’s food with lab chemicals, which might make them ill. I tell my students never to pour back into the stock solution because we might contaminate the stock solution, ruining future experiments. When an unidentified clear liquid (either pure water or a highly corrosive acid) splashes onto a student’s skin, I tell them to assume it’s the highly corrosive acid and wash immediately with copious amounts of water, just in case. Science teachers inadvertently instil in students a fear that laboratories are highly contaminating places. We do this with the absolute best of intentions.

Science teachers contribute to the notion that labs are full of contaminants.

Paranoia about contamination in laboratories has likely prevented countless accidents worldwide. It’s saved lives and limbs, too, and that’s why teachers must keep emphasising these safety messages. In doing so, however, do need to be mindful of the the unfortunate side-effect of ‘contagion’, which is the gut instinct that foods and lotions (or even water) created in a lab must be contaminated with something nasty. We need to counteract that notion in the following way.

We must emphasise purification techniques in school

When my students made aspirin last week (about 8 tablets’ worth), I told the students we cannot ingest the aspirin because “it’s contaminated: it contains unknown impurities”. Similarly, when we made esters last term (edible artificial flavourings), I told the students not to touch the esters or smell them too closely because they “contain contaminants such as highly corrosive sulfuric acid”. These safety warnings are valid and necessary – they’re actually a legal requirement of my job.

In industry, however, both aspirin and esters (and everything else) would be purified after production to a very high standard (usually 99.99%) before being certified safe for human consumption. Generally, however, high-school chemistry students don’t learn about purification techniques – not even in theory – so for them, the laboratory remains a dangerous place where dirty, contaminated things are created. Inadvertently, that’s become the take-home message from high-school science.

“…for [students], the laboratory remains a dangerous place where dirty, contaminated things are created.”

Purification techniques such as fractional distillation, centrifugation, recrystallisation, affinity purification and liquid-liquid extraction are all beyond the scope of a high-school chemistry course. Water purification and extraction of substances using supercritical carbon dioxide (scCO2) are in the Year 11 textbook, but these topics are not taught by many schools. Students don’t need to know the details – but they do need industrial relevance built into their course, and they need to be made aware that many of the products we use were made or designed in labs. Most importantly, they need to know that these products were purified to a high standard before being put to use.

People go for ‘natural’ products because they try to avoid potential contaminants from the laboratory

After years of hearing these messages in school, it’s no surprise that some people are so averse to eating foods or using products made in a lab. As one of my survey respondents put it so succinctly:

“If I can’t eat in a lab due to fear of contamination, how could food made in lab possibly be safe to eat? If I have been taught to treat every lab chemical that gets onto my skin as potentially corrosive, how could a moisturiser made in a lab from synthetic ingredients ever be good for my skin? This goes against what I’ve been taught throughout school!”

Science education in schools might just be one of the root causes – and one of the solutions – to the widespread prevalence of chemophobia. More next week.

This post is part of a weekly series on chemophobia. Read part 1 here.

On the Origins of Chemophobia – Part 1

800px-the_earth_seen_from_apollo_17
“The Blue Marble” is a famous photograph of the Earth taken on December 7, 1972, by the crew of the Apollo 17 spacecraft en route to the Moon.

The rise of the environmental movement is most often attributed to the publication of Rachel Carson’s Silent Spring in 1962, which demonised chemicals as it introduced them to the public:

“Chemicals are the sinister and little-recognised partners of radiation entering into living organisms, passing from one to another in a chain of poisoning and death” – Rachel Carson’s Silent Spring, 1962

Later that decade, the Apollo missions and the six moon landings between 1969 and 1972 gave us a new perspective of planet Earth that was so profound that we felt a sudden compulsion to protect its natural beauty. Watch Neil deGrasse Tyson argue this point below.

In 1970, we are still going to the moon, we are still going until 1972, so watch these sequence of events. In 1970, the comprehensive Clean Air Act is passed… Earth Day was birthed in March 1970. The EPA was founded in 1970… Doctors Without Borders was founded in 1971… DDT gets banned in 1972, and we are still going to the moon. We’re still looking back at Earth. The clean water act 1971, 1972 the endangered species act, the catalytic converted gets put in in 1973, and unleaded gas gets introduced in 1973… That is space operating on our culture and you cannot even put a price on that. – Neil deGrasse Tyson in April 2012

Together, Rachel Carson and the Apollo missions made the public in Western countries quickly aware of the Earth and its natural beauty. Humans were portrayed as selfish destructors of a planet that was supposedly most ‘beautiful’ when in its ‘natural’ state. The field of toxicology was spawned in wake of this concern, and had the goal of analysing the toxicity of different chemicals on humans and the environment. As the first edition of Human and Experimental Toxicology stated:

“Politicians cannot be expected to come to rational and acceptable decisions without adequate impartial and objective information, and toxicologists have grave responsibilities to produce such information”. – Human and Experimental Toxicology

While the field of toxicology accumulated a wealth of scientific evidence about ‘chemicals’, this evidence largely hasn’t trickled down to the public and certainly hasn’t allayed their fears. There remains a lingering skepticism about chemicals, especially artificial chemicals, which some people still feel are more harmful than those found in nature.

Take the Think Dirty iOS app, for example, which gives cosmetic ingredients a safety rating out of 9. According to the app’s creators, “Fragrance” gets the worst possible rating (9), while “Natural Fragrance” gets the best rating (1). Black-and-white ‘natural’ vs ‘artificial’ decision-making such as this is completely unfounded and ignores toxicological evidence. This kind of thinking is misleading, has no scientific basis and sometimes causes consumers to make harmful conclusions – no matter how benign their intentions. (More on this in future posts.)

This simplistic thinking is a remnant of the environmental movement back in the 1970s: that ‘selfish’ humans were destroying a ‘pristine’ planet Earth. While the ‘natural/good’ vs ‘artificial/bad’ dichotomy was an effective solution to short-term environmental problems of the time, this black-and-white thinking is actually leading people to make bad decisions today. We can no longer assume that “natural” is always “best”: the issue is actually far more complex than that. Toxicological evidence needs to be made public and easy to digest so that consumers can make more enlightened decisions.

This post is part 1 of a weekly series on Chemophobia. More next week.

Neil deGrasse Tyson – Space as Culture transcript

All-Natural Banana Poster Series PDFs

Ingredients of an All-Natural Banana and other fruits set $99
New for 2016: Click to download free PDFs of all twelve All-Natural Posters

It’s been two years since I posted the All-Natural Banana. Motivation behind this poster was to dispel the myth that “natural = good” and “artificial = bad”. It’s been a very successful project. It’s spawned 11 more “Ingredients” posters, a successful clothing line, and has sold thousands of print copies worldwide via this website.

Online news portal io9 then published a news story about the All-Natural Banana, which was followed in quick succession by articles in Vox, Forbes, Business Insider, the New York Times and more.

The All-Natural Banana has now received over 700,000 views via this website and millions more views via social media.

From today onwards, you can download the original PDF artworks for free. They come with a Attribution-NonCommercial 4.0 International Creative Commons License, which means that you can share them, print them and modify them as much as you like for non-commercial purposes only.

I’ll be following this up with an article on the ‘Origins of Chemophobia’ next week. Subscribe to this website below or subscribe via my Apple News channel here.

Click here to download the whole poster set.

Creative Commons Licence
All-natural Banana by James Kennedy is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at https://jameskennedymonash.wordpress.com/2013/12/12/ingredients-of-an-all-natural-banana/.

Kennedy Rainbow Cell

Kennedy Rainbow Cell electrolysis chemistry demonstration initial setup aerial view
Initial Kennedy Rainbow Cell setup

Demonstrate electrolysis with an electrolytic cell in a petri dish.

Materials

  • 1 × Large petri dish
  • 1 × DC Power pack
  • ~50 mL Distilled water dH2O(l)
  • ~3 g potassium nitrate powder KNO3(s)
  • 2 × Graphite electrodes
  • 2 × Wires with crocodile clips
  • 1 × Clamp and stand
  • 1 × Very strong static magnet
  • 1 × Roll of sticky tape (any type)
  • ~10 drops of universal indicator
  • ~50 mL dilute HNO3(aq)
  • ~50 mL dilute KOH(aq)
  • 1 × Spatula

Method

  1. Place petri dish on clean, light-coloured bench and add distilled water until it is two thirds full
  2. Add ~10 drops of universal indicator and observe the colour.
    Q: What pH is the distilled water? (You’ll be surprised!)
    Q: Why is/isn’t the colour green?
  3. Add ~3 g of potassium nitrate to the petri dish and stir using a spatula until completely dissolved
  4. Adjust the pH of the distilled water carefully using the nitric acid and potassium hydroxide as required. Try to make the universal indicator colour green (as pictured) ~pH 7
  5. Attach one electrode to each of two wires using crocodile clips
  6. Dip each graphite electrode into the green solution at opposite sides of the petri dish. Hold these electrodes (and wires) in position by in position by sticky-taping each wire to the surface of the workbench
  7. Demonstrate the strength of the magnet by attaching it to the clamp. Carefully, clamp the magnet into the clamp and position the magnet 2 mm above the surface of the green solution
  8. Ensuring the power is turned off, very carefully, attach the wires to the DC power pack according to the manufacturer’s instructions
  9. Turn the voltage to zero (or very low) and turn on the power pack
  10. Turn the voltage up slowly (12 volts worked well) and observe any changes you might see in the Kennedy Rainbow Cell

Extensions

  • Turn off the power pack and stir the solution. Explain why the colour goes back to being green. (If it’s not green, explain that, too!)
  • Turn the magnet upside-down (TURN OFF THE POWER FIRST)
  • Reverse the polarity of the wires
  • Use AC current instead of DC
  • Use different indicators
  • Why would using NaCl(aq) be dangerous in this cell?
  • How can you maximise the swirling?
  • How can you make this experiment much more epic?

Click to download Kennedy Rainbow Cell worksheet (PDF)

Safety considerations

  • Make your own risk assessment before carrying out this experiment
  • The strong magnet is capable of attracting both wires to itself. Don’t be touching the exposed parts of the crocodile clips when this happens. If this does happen, immediately turn off the power pack and fix the problem. Secure the wires with more tape. Don’t touch the electrodes while the Cell is operating.
  • Don’t use chloride salts or hydrochloric acid in this experiment. The voltages involved can cause the production of toxic chlorine gas if sodium chloride is used. Use nitric acid and potassium nitrate instead.
  • Make sure the wires don’t touch each other.
  • Again, make your own risk assessment before carrying out this experiment

Video

Disclaimer

This cell is potentially dangerous. I accept no responsibility for and loss, damage or injury caused by the operation of a Kennedy Rainbow Cell. If you’re under 18, always get adult permission before you make this type of cell.

Elements 113, 115, 117 & 118 are now Confirmed!

Periodic table
Image courtesy of RSC

Article originally posted on rsc.org

Confirmation that four new elements – those with atomic numbers 113, 115, 117 and 118 – have indeed been synthesised has come from the International Union of Pure and Applied Chemistry (Iupac), completing the seventh row of the periodic table.

The groups credited for creating them – in Japan, Russia and the US – have spent several years gathering enough evidence to convince experts from Iupac and its physics equivalent, the International Union of Pure and Applied Physics, of the elements’ existence. All four are highly unstable superheavy metals that exist for only a fraction of a second. They are made by bombarding heavy metal targets with beams of ions, and can usually only be detected by measuring the radiation and other nuclides produced as they decay.

Continue reading on rsc.org…

“Soluble or Not?” Chemistry Flashcards

Soluble or Not? Flashcards. Click to buy
Soluble or Not? Flashcards. Click to buy

Solubility rules are among the most important things you’ll need to memorise in your VCE Chemistry studies. There are two main ways to get this done: either learn a set of rules or memorise all the compounds you need by themselves. I use a mixture of these two methods to figure out whether a compound dissolves in water or not.

Test your students (or yourselves) with a set of Soluble or Not? flashcards. Each flashcard has a commonly-used compound on the front (e.g. Zn(OH)2) and the word SOLUBLE or NOT on the back.

There are three ways to use these cards.

1. Name the compound.

Present the cards to the student white side up. The student should state the full name including Roman numerals (e.g. iron(III) oxide) as quickly and accurately as possible.

2. State the formula.

Present the cards red/green side up. The student should state the chemical formula of each compound accurately. This step also serves as a primer for the next stage, which requires students to know whether each of these compounds is soluble. The solutions are visible during this step of the game.

3. Soluble or Not?

Present the cards white-side up again. Ask the student to separate the cards into two piles (“SOLUBLE” and “NOT”) without turning them over. At the end, collect all the cards, turn them all over and review the ones that were incorrect. Repeat weekly until the student can get all of them right.

This is where you might want to buy your own set of cards. I’ve hand-picked compounds that come up frequently in VCE examinations from units 1-4, and these will help you focus your learning.

CLICK HERE to buy your set of 20 Soluble or Not? flashcards for A$25.00 with free international shipping.

Fee Structure 2016

One simple fee structure applies to all home tutoring students in 2016.

60 minutes AUD 75
90 minutes AUD 110
120 minutes AUD 150

Fees include:

  • tutoring time at the student’s home;
  • weekly homework;
  • access to all required materials including textbooks, quizzes and revision booklets;
  • 24/7 Chemistry support via email and telephone.

Subjects available for tutoring are:

  • Chemistry Units 3&4
  • Chemistry Units 1&2 (NEW COURSE for 2016)
  • Physics Units 1&2 (NEW COURSE for 2016)
  • Year 10 Science
  • Year 9 Science

Ready to make an enquiry?

NEXT STEP >> Click here to enquire about home tutoring

agap2_technologies-5-1920-1080

Slow Reading Makes You Smarter

books open random pages

“Why bother reading?” is a question I’m asked occasionally by students, and “reading makes you smarter” is my standard response. This week, I want to expand on this fact and give some evidence for reading being a major contributor not only to academic success, but to success in many other aspects of life as well.

Reading improves your IQ and EQ

Firstly, there’s convincing evidence by Mar et al., (2009) that people who read fiction have greater ability to understand others’ emotions, emphasise with them and view the world from their perspective. In other words, reading increases your emotional quotient (EQ).

Second, there’s convincing evidence that reading increases your vocabulary. Cunningham & Stanovich (2001) penned an excellent analysis that includes evidence from many other studies that a person’s vocabulary is increased fastest by reading, particularly reading books outside of school hours, than by learning lists of vocabulary on their own.

Improving your EQ has obvious benefits. But what are the advantages of increasing your vocabulary? Increased vocabulary has been shown to be linked with increased intelligence and socioeconomic status. Even if the link is correlative and not causative, people will still benefit from the perceived intelligence that an increased vocabulary brings about.

Furthermore, Olson, D. R. (1986) writes:

It is easy to show that sensitivity to the subtleties of language are crucial to some undertakings. A person who does not clearly see the difference between an expression of intention and a promise or between a mistake and an accident, or between a falsehood and a lie, should avoid a legal career or, for that matter, a theological one.

It has also been widely argued in the literature that reading can increase vocabulary faster than verbal interactions because our written vocabulary is so much more diverse than our spoken vocabulary.

What type of reading should I be doing?

Deep reading is the most effective way to increase your IQ and EQ.

Deep reading involves:

  • decreased physical activity while reading
  • zero distraction (or immunity to distraction: being ‘in the zone’)
  • reading for extensive periods of time: many hours in one sitting
  • processing the things you read in a meta-cognitive way, e.g. writing book reviews or making notes as you read

Deep reading is vigorous exercise from the brain. It increases our capacity for empathy in real life. Deep reading is slow, immersive, rich in sensory detail and emotional and moral complexity, and is very different from the kind of reading we do on the internet or even in school. Deep reading is a distinctive experience, different in kind from the mere decoding of words. Victor Nell reported in 1988 that deep readers read their favourite pages more slowly than average, and that deep reading is usually accompanied by a significant decrease in physiological activity. He even noted that deep reading sets the reader into a psychological state akin to a hypnotic trance.

“…deep reading sets the reader into a psychological state akin to a hypnotic trance.” – Victor Nell (1988)

Can I use an iPad or an e-reader?

Not for deep reading, no. Use an e-reader or an iPad for reading magazines and news articles only. Not only are electronic devices prone to distracting you (under the ruse of ‘multitasking’), but studies have shown that readers who read books on electronic devices:

While reading can be done on electronic devices, deep reading needs to be done from paper. Not only are printed books free of popup notifications and advertisements, they also kinder on your eyes (because they’re not backlit) and lend themselves better to being highlighted and annotated in the margins if required.

Read more about 10 reasons print books are better than e-books on Huffpost

I hate reading. Why do I hate reading?

Here’s a flowchart derived from Cunningham & Stanovich that explains why some people hate reading. Their premise is that people who hate reading have been introduced to books that are too difficult so the excessive focus on the meaning of individual words distracts people from the meaning of paragraphs or chapters as a whole.

flowchart for reading article
Adapted from Cunningham & Stanovich (2008)

It’s therefore important to choose books of an appropriate reading level.

So what should I read (or, ‘deep read’)?

Choose a genre that matches your interests and a medium that matches your reading level. The material you read should be not too easy and not too difficult. Here’s a rough guide to the difficulty level of different types of media.

reading materials help you to become more intelligent

Occasionally, try to expand your horizons by challenging yourself to read something you wouldn’t normally read. Here are some great ways to read outside your comfort zone:

  • swap books with a friend;
  • get books recommended to you by a teacher, tutor or a family member;
  • participate in a book club, in which you read a new book each month or fortnight.

How much should I read each day?

Aim to read 3,300,000 words per year. That equates to about one book per week, which puts you above 95% of the adult population.

In 2012, when I realised I wasn’t reading enough, I decided to read a book every two days. I posted all the reviews online as a way of holding myself accountable to reading them thoroughly and deeply. Reading this much was difficult and time-consuming at first, but, just like sports, I become faster and more proficient as I read more books.

number of hours of independent reading

Read one book per week and review it online to keep yourself accountable.

Conclusion

Get involved in deep reading by reading one book per week and posting the reviews online. Here’s your new reading process for the new year.

your new reading process for 2016

Read more about why reading is important here

Top Tips for University

Macquarie-University-Lecture-Theatres-27.jpg
Students attend a lecture at Macquarie University, Australia

You’ve graduated and you’re waiting for VCE examination results day on December 14th, 2015. In the meantime, you can rest, celebrate, and get ready for university.

When I completed my master’s degree at Cambridge University in 2010, I took note of the habits and traits that helped me to succeed in university. I didn’t maintain all of them all the time – rather, I fluctuated between doing these things and doing the exact opposite – but the process has taught me which character traits and mental attitudes are necessary for academic success in university. Here are my top ten tips for university. Each one of these tips is written carefully from my personal experience.

  1. If you have a strong opinion on something, be prepared for it to change COMPLETELY several times before graduation. That’s how we grow and learn.

  2. Always know where you’re going from now on. Always have a goal and you’ll never feel lost.

  3. Ask for help from professors or lecturers if you don’t understand something. (They will not reach out to you in university.)

  4. Read all the textbooks on the reading list. Read the whole books (not just the required chapters) if you have time.

  5. Textbooks are always more important than academic papers despite what your lecturers tell you. Read the textbooks first.

  6. Always make notes as you read.

  7. Arrive early to lectures to get the best seats and to make friends with like-minded, punctual and keen students before the lecturer arrives.

  8. Socialise carefully. Will joining this particular group/team help you to grow as a person? Some groups will help you grow; some will drag you down. Choose carefully!

  9. Don’t be too stubborn but don’t be too easily influenced, either. Be in the middle.

  10. Smile! 😃

Last-Minute Tips for the VCE Chemistry Exam

exam-hall-empty
You’ll be sitting here tomorrow.

Only positively-charged fragments from mass spectrometers produce a peak on the spectrum. Uncharged free radical fragments are not detected because they lack a positive charge.

Weak acids with a lower Ka value are the weakest… this means that they ionise to a lesser extent when in aqueous solution, giving rise to a lower concentration of available H3O+(aq) and a higher pH.

The conversion of triglycerides (a type of ester) into biodiesel (another type of ester) is called transesterification.

The covalent bonds between deoxyribose and phosphate groups in DNA form a group of atoms called a phosphodiester group.

Ether bonds and glycosidc bonds are not the same. Ether bonds are C-O-C. Glycosidic bonds are a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

Amide groups and peptide groups are not the same, either. Amide groups are CONH. Peptide groups are CONH between amino acid residues in a polypeptide chain. Nylon, for example, has amide groups (CONH) which aren’t called peptide groups.

Ether: C-O-C
Ester: COO
Amine: NH2
Amide: CONH

The molar mass of any amino acid without its Z-group is 74 gmol-1.

The molar mass of glucose, fructose and galactose (all monosaccharides) is 180 gmol-1. By coincidence, aspirin is also 180 gmol-1.

The molar mass of sucrose is 342 gmol-1 because (180*2)-18=342.

In general, energy is required to break bonds. Energy is released when bonds are formed.

Use the formula C-(H/2) to find how many C=C are present in a fatty acid (only works for fatty acids).

Use the shortcut formula (Ka/[acid])^0.5 to find % ionisation of a weak acid.

Use -log(Ka) to find the exact pH at the end point of an indicator.

Use the quick titration formula for rapid multi-choice titration questions: c1v1/ratio1 = c2v2/ratio2

A hydrogen bond is an intermolecular bond that forms between O-H groups. The covalent bond between the O and the H is not a hydrogen bond.

Can you write the half-equation for the reaction occurring at the anode in an ethanol-oxygen fuel cell with an alkaline electrolyte? Tip: start by writing the known reactants and products then use KOHES(OH) to balance your equation.

The products of a titration determine the pH at the equivalence point. For example, the the pH at the equivalence point in a titration between CH3COOH(aq) and NaOH(aq) is around 8.5 because at equivalence point, only products are present: Na+(aq) and CH3COO(aq). The ethanoate ion (CH3COO(aq)) is a weak base, which makes the solution produced slightly basic.

If you have absolutely no clue in the multiple choice sections, pick C. In the last 4 years of VCE Chemistry examinations, C has been correct 50% more of the time than B.

The multiple choice questions really do get harder towards the end. I’ve done the statistics.

Use your reading time wisely. During reading time, read all the questions with the following idea in mind: “how would I do this question?” without actually doing the question.

Bring sharp pencils.

Sleep early tonight (before 9pm). At this stage, getting enough sleep is far more important than revising those tiny details that may or may not come up in the examination.

All the best tomorrow.

Test Yourself Here on the Hardest VCE Chemistry Questions Ever Asked

VCE Chemistry Hardest Multiple Choice Questions Ever Asked Great Revision Tool
Click the image to begin Quiz 1

Great revision tools are available here. All the questions in these quizzes are real VCAA Chemistry questions extracted from Section A of past Chemistry papers.

Quiz 1
Answers

Quiz 2
Answers

Quiz 3 (long)
Answers

8-Page VCE Chemistry Formula Booklet Just $55

VCE Chemistry Formula Booklet INSIDE
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.

Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring.

There are 76 formulae in total, at least 10 of which are original. Orders are shipped on A3 paper, stapled along the spine and folded to an A4-sized booklet that resembles the VCAA Data Booklet.

Orders from schools, students and tutors are all welcome. Price includes free international delivery and 10% voucher for the T-shirt store.

Order your copy now by clicking here

VCE Chemistry Formula Booklet FRONT
Click to purchase a printed copy for just $55

Revise What’s HARD: Focus on Electrolysis

VCAA VCE Chemistry how difficult is each topic
Click to download PDF version. Numbers in parentheses denote Chapter numbers.

The VCE Chemistry examination is only 22 days away. As you complete at least one practice paper each day and correct them ccording to your revision timetable, you’ll be finding that you’ve already mastered certain topics while others remain difficult.

Patterns emerge in student readiness: each year, electrolysis is the worst-studied topic on the course. Because VCAA has a reputation for asking questions on topics that students repeatedly got wrong in previous years; I decided to test this hypothesis by getting real data from recent examination reports and displaying it on a scatterplot of:

  • how difficult each topic is (% of marks lost) on the x-axis
  • how often the topic is asked (marks per paper) on the y-axis

The results were fascinating. While it’s impossible to say with any certainty which topics will be on the examination this year, previous years’ examination papers have placed more emphasis on the difficult topics (electrolysis, Ka, redox and biofuels). Focus your revision on these topics again this year.

Conclusion: Focus your Chemistry revision this week on your least favourite topics… those topics will probably be worth more marks in the examination!

Chapter 25: Essential Calorimetry Formulae

Chapter 25 Essential Calorimetry Formulae VCE Chemistry
Click to download PDF version

Calorimetry can be a confusing topic. Avoid common errors by following these essential tips:

  1. Always label the units of E (kJ or J) above the E. This is the most common source of error in calorimetry calculations. Try this quick way to remember the required units of E: If there’s ΔH in the equation, the units are kJ; otherwise, the units are J.
  2. In E=mcΔT, all the variables refer to the mass of water being heated. A common error among students is to use the mass of limiting reactant instead of the mass of water. Generally, m in this equation is 100 g or a similar round number.
  3. Never convert ΔT to kelvin. Temperature changes are the same in kelvin and celcius… never add 273 when finding ΔT.
  4. No calibration step? Use m×c instead. Because E=mcΔT and E=CfΔT, it therefore follows that Cf ≡ m×c. For example, if we’re heating a 100.0 g of water without a Cf, we should use Cf = 100×4.18 = 418 J K-1 instead.
  5. In ΔH = E/n, n denotes the number of moles of limiting reactant. Never add up the number of moles of reactants: use the number of moles of limiting reagent only.
  6. Calculate twice. Students most often make mistakes when converting hours or days into seconds. Many answers are therefore wrong by a factor of 60. Do your calculations twice: once while doing the question and again when you check over your answers at the end of the SAC or examination.
  7. Know a ballpark figure. Neutralisation and solubility reactions tend to have 2-digit ΔH values; combustion reactions tend to have a 3-digit ΔH and explosive reactions tend to have a 4-digit  ΔH. If you get a 5-digit ΔH value, you’ve probably forgotten to convert your answer into kilojoules!
  8. Remember the ‘+’ or ‘-‘ sign! The calculator doesn’t know whether the answer should be positive or negative. Think about it yourself instead: endothermic reactions need a ‘+’ sign and exothermic need a ‘-‘ sign. VCAA awards a whole mark for getting the ‘+’ or ‘-‘ sign correct! It’s possibly the easiest mark in the whole paper.

Consider getting a home tutor who can answer your questions and explain difficult concepts to you. Students learn much faster with a tutor than on their own.

For more Study Tools for Year 12 students, click here.

Chapter 27/28: Six Universal Principles of Redox Reactions

Redox can be a confusing topic for VCE Chemistry students. It’s also taught right at the end of the year, when students are tired and some teachers are rushing their lessons so they can finish the course before the end of Term 3. Student motivation levels are at their lowest time of the year, which means that students often finish the course with an incomplete understanding of Redox.

Fortunately, there are six universal principles that are always true in Redox no matter what type of cell is being studied.

First, here’s a reminder of the types of cells you need to have studied in this course.

Galvanic Cells

  • Primary (can’t be recharged)
  • Secondary (can be recharged)
  • Fuel Cells (reactants are supplied continuously)

Electrolytic Cells

  • Electroplating Cells (no overall reaction)
  • Electrolytic Cells (non-spontaneous reaction)
  • Commercial Cells (usually molten electrolytes)
  • Recharge reaction of a secondary cell (non-spontaneous)

Now, here are the six universal Redox principles.

1. The strongest oxidant at the cathode reacts with the strongest reductant at the anode (SOC SRA)

To predict which species will react with each other, circle all the species present at the cathode on the electrochemical series. The highest species on the left will always react. Now, circle all the species present at the anode… the lowest species on the right will react.

2. The half-reaction with the highest E° value is always positive

In all cells, the half-equation with the highest electrode potential (also called ‘reduction potential’ or E° value) always occurs at the positive electrode. Similarly, the half-equation with the lowest electrode potential (E°) will always occurs at the negative electrode.

3. OIL RIG

Oxidation is loss of electrons. Reduction is gain of electrons.

4. ←AN OIL RIG CAT→

Anode reaction (oxidation reaction) is whichever reaction is happening to the left in the electrochemical series.

Cathode reaction (reduction reaction) is whichever reaction is happening to the right in the electrochemical series.

5. Electrons always flow in this order (RACO)

Reductant → anode → cathode → oxidant

6. In the internal circuit, cations always flow to the cathode, and anions always flow to the anode.

The internal circuit might be an electrolyte or a salt bridge that contains soluble weak oxidants and reductants such as KNO3(aq) (potassium nitrate). Either way:

  • cations always flow to the cathode; and
  • anions always flow to the anode.

Keep practicing redox questions by completing past papers, Checkpoints and Lisachem questions. If you need more help, contact me via the Get a Tutor button in the site’s menu bar. Students learn much faster with a tutor than on their own.

For more Study Tools for Year 12 students, click here.

Image courtesy of Annenberg Learner