Get your Future-Proof VCE Chemistry Formula Book for just $55

James Kennedy's VCE Chemistry Formula Book 2017-2021Inspired by the formula booklets used by VCE Physics and VCE Maths Methods, here’s an 8-page Chemistry formula booklet you can use for your Year 11 and 12 Chemistry assignments. This custom-made booklet is a collection of reliable formulae that I have been using to answer VCE Chemistry questions while teaching and tutoring around Melbourne.

There are 76 formulae on 8 pages. At least 10 of these formulae aren’t in the three main chemistry textbooks. Orders are shipped in A4-sized booklet that resembles the VCAA Data Booklet.

Orders from schools, students and tutors are all welcome. Price includes free international delivery and a 10% voucher for the T-shirt store.

Order your copy now by clicking here

Learn from the best

James Kennedy achieved outstanding A-level results in 2006 in Maths, Chemistry, Physics and Biology. Those excellent grades (which equate to an ATAR of 99+) earned him a BA (Hons) degree and a Masters degree in Natural Sciences from the University of Cambridge.

Shortcut formulae were just one of the techniques James used to pass his A-level exams and get into Cambridge. Along with structured revision, revision guides, practice papers and study notes on wall-cards, James used shortcut formulae to save precious time in the examination hall. You can get your own copy of these original shortcut formulae – revised and updated for the 2017-2021 VCE Chemistry course – for just $55 including free international shipping. Click here to get your copy.

Here’s an preview of the inside

VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.
VCE Chemistry Formula Booklet, $55. Free, Fast Delivery Included.

Click here to purchase your 8-page companion book with 76 formulae relevant for VCE Chemistry Units 1-4

Let’s add oxygen, fluorine and neon gases

Oxygen from Theodore Gray's amazing book, The Elements
Oxygen from Theodore Gray’s amazing book, The Elements

This post concludes the Periodic Table Smoothie experiment.

Recall that we’ve just finished adding one mole of nitrogen gas and created a bizarre boron polymer at the bottom of our vessel. The temperature was 350 °C and the pressure in our vessel was 891 kPa.

Today, we’re going to add 1.00 mole of oxygen gas, stand back and observe.

Nothing happens.

This is disappointing news.

Many of the substances in our vessel react (more accurately, explode) in the presence of oxygen but the ignition temperature for all of those explosions to take place is at least 500 °C. The temperature of our vessel is set at just 350 °C. At this temperature, nothing would actually happen.

There’s not enough activation energy to break bonds in the reactant particles in order to get the reaction started. We call this activation energy (EA) in chemistry. If we were to add a source of excessive heat (e.g. a matchstick), the vessel would explode.

Should we heat up the vessel to 500 °C and blow up the experiment right here?

If we did, the following reactions would happen:

image115
image117
image119
image121
image123
image125
image127
image129

Enough of these reactions – particularly the first three – are sufficiently exothermic to trigger a chain reaction – at least up to the reaction of oxygen with beryllium carbide. The vessel would bang, explode, and shatter. The helium would float away, dangerous lithium amide would fly out sideways, and polyborazine powder, whatever that is, would land on the floor.

Let’s not ignite our experiment – not yet.

Conclusion after adding 1.00 mole of oxygen gas

Substance Amount in mol
He(g) 1.000
Be(s) 0.514
LiH(s) 0.000
Li2C2(s) 0.272
B2H6(g) 0.000
Be2C(s) 0.175
H2(g) 0.007
BeC2(s) 0.136
CH4(g) 0.009
N2(g) 0.552
NH3(g) 0.154
LiNH2(s) 0.277
polyborazine 12.194 grams

Pressure: 891 kPa (higher than before due to the addition of nitrogen gas)
Temperature: 350 °C (vessel is still being maintained at constant temperature)

Oxygen was relatively uneventful. Let’s add fluorine and see what happens.

Let’s add fluorine gas

elements110009
Elements by Theodore Gray

The following three reactions would all occur as 1.00 mole of fluorine gas is added:

image133
image135
image131

These two products are quite interesting:

  • HF, hydrogen fluoride, an aqueous solution of which was used by Breaking Bad’s Walter White to dissolve evidence (his victims)
  • NF3, nitrogen trifluoride, is used as an etching agent when making printed circuit boards (PCBs)

Let’s add neon gas

elements110010
Elements by Theodore Gray

When 1.00 mole of neon gas is added, the total pressure inside the vessel increases but no reaction occurs. The concentrations of all the other gases present are unaffected.

The End

That concludes our Periodic Table Smoothie experiment. The most interesting conclusion was the discovery of polyborazine, the bizarre solid that collected at the bottom of the vessel.

Also of interest was how easily we created ammonia, one of the simplest of biological compounds, just by mixing elements together. Could the compounds necessary for life be so easy to create that their existence is an inevitable consequence of the Big Bang? Is life inevitable? If the Big Bang were to happen all over again, would life occur? And would it look any different?

Possibly not.

We Lied To You

Click to download the book
click-here

This book contains 50 lies taught in the VCE Chemistry course.

These lies include well-meaning simplifications of the truth, mistakes in the textbook, and, in a few extreme cases, blatant falsehoods.

This book isn’t a criticism of the VCE Chemistry course at all. In fact, I just want to highlight the sheer complexity of Chemistry and the need to make sweeping generalisations at every level so it can be comprehensible to our students. This is a legitimate practice called constructivism in pedagogical circles. (Look that up.)

Many of these ‘lies’ taught at VCE level will be debunked by your first-year chemistry lecturers at university.

Here’s a preview of some of the lies mentioned in the book. Check out all 50 by clicking the download link at the bottom of the page.


lie-2


lie-15


lie-25


we-lied-to-you-cover-lightbulbs

click-here


SUVAT rearranged

SUVAT Rearranged. Traditional SUVAT equations are highlighted yellow. Copy this to your cheat sheet!
SUVAT Rearranged. Traditional SUVAT equations are highlighted yellow. Copy this to your cheat sheet!

There are just five traditional SUVAT equations:

Traditional set of five SUVAT equations

Save time in your examination by looking up the relevant equation from this table instead of rearranging them manually.

Click here to download free PDF to put on your Physics Cheat Sheet

Pre-order my second book “We Lied To You” here

Pre-order here
Pre-order here

The content you’re learning now is probably not as true as it seems. Chemistry is a set of models that explain the macro level sometimes at the expense of detail. The more you study Chemistry, the more precise these models become, and they’ll gradually enlighten you with a newfound clarity about the inner workings of our universe. It’s profound.

Rules taught as ‘true’ usually work 90% of the time in this subject. Chemistry has rules, exceptions, exceptions to exceptions, and exceptions to those – you’ll need to peel pack these layers of rules and exceptions like an onion until you reach the core, where you’ll find Physics and Specialist Maths.

Enjoy this book. I hope it emboldens you to question everything you’re told, and encourages you to read beyond the courses you’re taught in school.

Pre-order the FREE e-book by filling in the form here.

Get my latest book here: Common VCE Chemistry Mistakes… and how to avoid them

Common VCE Chemistry Mistakes COVER.jpg

This book is a collection of common mistakes in VCE Chemistry and how to avoid them.

It comes from years of marking student SACs and exam papers, and from reading Examination Reports from the VCAA as well.

It’s free of charge, very informative, and very concise.

Click here to download the FREE book.

Redox Rules

Click to download REDOX RULES posters for VCE Chemistry
Click to download REDOX RULES posters for VCE Chemistry

What’s redox? We never learned that!

Yes, you did. I use the term “redox” to refer to all of the following chapters in Heinemann Chemistry 2, which you will have learned at the end of Term 3 (September).

  • Chapter 26: Redox (revision of Year 11)
  • Chapter 27: Galvanic Cells
  • Chapter 28: Electrolytic Cells

Don’t underestimate redox

The VCAA has consistently used redox to discriminate which schools and students have the self-discipline required to keep studying at the end of the year. Studies show that redox is taught at a time when student motivation is at its minimum: energy levels are low, emotions are high, and graduation is just over the horizon. Many schools and students gloss over these topics because they’re running out of time, any many students think they’ve grasped the topic – when they’ve actually grasped misconceptions instead.

VCAA VCE Chemistry how difficult is each topic
Notice how chapters 26, 27 and 28 are consistently the most difficult and the most frequently askedClick to download PDF version

Here are some popular redox lies (misconceptions)

LIE #1: The polarities switch during recharge
Nope. The polarities never switch. It’s the labels of ‘anode’ and ‘cathode’ that switch because the electrons are flowing the other way through the external circuit. Polarity is permanent.

LIE #2: Hydrogen fuel cells don’t emit any greenhouse gases
Wrong. They emit H2O, which is a powerful greenhouse gas. If you don’t believe that the VCAA can be this pedantic, think again. Read their 2015 Examiners Report here.

LIE #3: Each mole of electrons forms 1 mol Ag, 2 mol Cu or 3 mol Al in a cell
Wrong again. If you look at the half-equations, you’ll see that each mole of electrons actually forms 1 mol Ag, 12 mol Cu or 13 mol Al. That’s why I teach “1, 12 and 13 moles” instead of the typical “1, 2, 3 moles” rule.

LIE #4: Temperature increases the rate of reaction in electroplating
Wrong! Remember that Faraday’s first law states that m ∝ Q. Because Q = I×t, only those two things – current and time – can affect the mass deposited at the cathode.

LIE #5: Electrons always leave the anode and go towards the cathode
Wrong again. Electrons go RACO: to see what that means, download the posters above. This question appears in recent versions of Chemistry Checkpoints. Give it a try.

LIE #6: The cathode is always positive
Ask your teacher.

LIE #7: Ions flow one way in the salt bridge
Nope. Anions always migrate to the anode; and cations always migrate to the cathode.

LIE #8: KOHES always works for balancing half-equations
KOHES only works for cells with acidic electrolytes. For cells with alkaline electrolytes, which sometimes appear in VCAA papers despite not being in the study design (see page 46 here), you’ll need to use KOHES(OH). Here’s KOHES(OH) explained:

  1. Do KOHES as normal
  2. Add the same number of OH(aq) ions to each side of the half-equation to balance out the H+(aq)
  3. Cancel and simplify. Remember that H+(aq) + OH(aq) makes H2O(l). Remember also to cancel out any remaining H2O(l).

LIE #9: I can balance an unbalanced redox equation by putting numbers in the equation
Don’t be fooled by this one! The ONLY way to balance an unbalanced redox equation successfully is to do the following:

  1. Separate it into two half equations
  2. Balance them using KOHES or KOHES(OH) as appropriate
  3. Multiply them and recombine
  4. Cancel and simplify
  5. Done!

That’s a lot of work but it’s the  only way to do it successfully. If you try to ‘cheat’ by just writing numbers (molar coefficients) in front of the reactants and products, you’ll find that the charges don’t add up, and you’ll get zero marks for the question.

LIE #10: I can break up polyatomic ions to make balancing half-equations easier
Nope! You’re only allowed to separate aqueous species in a half equation or an ionic equation. Because the Mn and O are actually bonded together in a polyatomic ion, you’ll need to write this:

  • MnO4(aq) + 8H+(aq) + 5e → Mn2+(aq) + 4H2O(l)  2/2 marks

Instead of this:

  • Mn7+(aq) + 5e → Mn2+(aq)  0/2 marks

If in doubt, keep it intact and it’ll cancel out by the end if it’s a spectator ion.

LIE #11: The two reactants that are closest together on the electrochemical series react
Not always true. Use SOC SRA instead, which is explained in the posters above. Still struggling? Ask your teacher or tutor for help.

LIE #12: Oxidants are all on the top of the electrochemical series
They’re actually on the left, and all the reductants can be found on the right side of each half equation in the electrochemical series. There is no top/bottom divide on the electrochemical series: only a left/right divide of oxidants/reductants.

Decorate your school/bedroom/hallway

Surround yourselves with truthful redox revision using these 17 free Redox posters. I’ve had these up around the whiteboard for a few weeks now – they’re a constant reminder to students that redox has many ideas that are always true.

One more tip: print and laminate an electrochemical series (available here) so you can annotate it during dozens of practice dozens without wasting paper. Good luck!

Mystery supervolcano is at the root of the ‘mad scientist’ stereotype

The Mad Scientist stereotype was caused ultimately by a supervolcano that nobody can locate to this day
The Mad Scientist stereotype was caused ultimately by a supervolcano that nobody can locate to this day

In 1808, a massive volcano erupted somewhere on Earth. So large was the eruption that it bellowed sulfate particles into the atmosphere that caused significant global cooling in the years that followed (Guevara-Murua 2014). Despite its gargantuan size, nobody to this day has been able to locate the volcano or find any direct eyewitness accounts of its eruption. The volcanic eruption of 1808 remains an unresolved scientific mystery to this day.

How do we know this mystery volcano ever erupted at all? The first piece of evidence is an increase in sulfuric acid concentration found in Greenland ice cores, which are a characteristic ‘chemical signature’ of sulfur-rich volcanic eruptions (Dai 1991). The only major spike in sulfuric acid concentration in Greenland ice that doesn’t align with a real volcanic eruption observed somewhere on Earth is the spike found around 1808, suggesting the existence of this mysterious volcano.

The second piece of evidence is called the ‘sulfur isotope anomaly’. Deposits of sulfur buried deep underground have a different isotopic composition compared with sulfur sources on the planet’s surface. In the same way that we can monitor the effects of fossil fuel combustion on atmospheric concentrations of carbon dioxide, we can quantify the amount of sulfur emitted from volcanoes by measuring changes in the relative quantity of sulfur-33. A huge spike in Δ33S suggests an enormous volcanic eruption occurred – and that’s exactly what we see when we study samples from the year 1808.

The third piece of evidence comes from trees. Trees grow at different rates depending on the climate. In particular, trees grow faster when it’s warmer (but not too hot, of course, which inhibits their growth somewhat), and they grow more slowly when it’s cold. Counting tree rings can reveal not only the age of the tree, but measuring the thickness of each tree ring allows researchers to estimate the amount of growth the tree accomplished in a given year. By measuring different trees in the same region, researchers can gain insight into the past climate of that particular region. Analysis of tree rings has shown that bristlecone pine trees had drastically decreased growth rates in the summer of 1809, suggesting the climate cooled significantly around that time (Salzer 2007). Cooling might have been caused by a giant volcano.

While none of this evidence amounts to a direct observation that the mystery supervolcano ever erupted, we do have eyewitness accounts of volcanic ejecta from exactly the same time. All the evidence, taken together, definitely points to the fact that the supervolcano did in fact exist. Scientists, in fact, are certain.

The first eyewitness account was written a highly respected Colombian scientist called Francisco José de Caldas, who described “a transparent cloud that obstructs the sun’s brilliance” over Colombia for several months from December 1808 to February 1809. The second eyewitness was a physician named José Hipólito Unanue who wrote about seeing “sunset afterglows” over Peru in the same time period. Both these observations are characteristic of large volcanic eruptions.

The fact that atmospheric haze was observed in both Colombia and Peru, which are in the southern and northern hemispheres respectively, suggest that this volcano was located somewhere in the tropics. These observations imply that ash was cast 2,600 km in all directions but the effect on the climate was global. One researcher is quoted as saying the mystery volcano “blanketed the planet in ash”. (Cole-Dai n.d.)

Vulcanologists rate volcanic eruptions on a scale called VEI (volcanic explosivity index), which is similar to the Richter scale for earthquakes. It’s a logarithmic scale that approximates the volume of ash that’s ejected by a particular eruption. The logarithmic nature of the scale means that while a VEI-3 eruption is called “severe”, a VEI-4 event is called “cataclysmic”. In 2010, Eyjafjallajökull erupted in Iceland, resulting in ash cloud so large that it caused severe delays to air traffic across Europe, Greenland, Russia and eastern Canada. The Eyjafjallajökull eruption was a VEI-4 (“cataclysmic”) event.

When Mount Saint Helens erupted in 1908, killing 57 people and causing $1.1 billion of damage across Canada and the US, it was classified by vulcanologists as a VEI-5 (“paroxysmic”) event. Alarmingly, the mystery volcano in 1808 was at least 10 times more devastating than Mount Saint Helens in terms of the volume of ash ejected. The mystery volcano was a VEI-6 event, and it’s described by vulcanologists as “colossal”.

Volcanic ash acts “like a giant window shade, reflecting sunlight and lowering temperatures on the ground for years afterward” (Cole-Dai n.d.). Temperatures across Europe were measurably lower in the years that followed as the ash cloud obscured incoming rays from the sun. Trees grew more slowly (as evidenced by tree ring data), harvests were diminished and the climate cooled for several years afterwards.

This cooling came at a very inconvenient time. Temperatures were already lower than usual in the northern hemisphere due to the Little Ice Age. In a further devastating blow, a second, much larger volcano erupted on April 10, 1815. It was located on Mount Tambora in Indonesia and had an intensity of VEI-7 or “super-colossal” (this is just one level away from VEI-8, which is named rather horrifyingly, “apocalyptic”). Mount Tambora’s eruption was so ‘super-colossal’ that 90% of the islanders on Tambora were killed by lava flowing down from the sky. Downpours of hot ash killed trees and fish for miles around, covering them with inches of grey dust. Hot ejecta was propelled eighteen miles into the air above the volcano producing a ‘boom’ that could be heard a thousand miles away. People across Indonesia mistook the volcanic ‘boom’ for a ship’s rescue signal or a bomb detonation. Some army officials across Indonesia’s vast archipelago even dispatched troops to defend their islands after mistaking the ongoing volcanic roar for the sound of an invading army.

The sulfur dioxide released from the super-colossal Mount Tambora explosion reacted with gases in the stratosphere to produce 100 million tons of sulfuric acid, H2SO4. The sulfuric acid condensed and remained suspended in an ‘aerosol cloud’ (basically a cloud) that was accelerated by stratospheric jet streams (basically very strong winds) until the entire globe was smeared with a thin layer of H2SO4. This is a rare event, and only happens following truly colossal volcanic eruptions. Interestingly, H2SO4 reflects incoming rays from the sun, and temperatures, which were already low as a result of the mystery supervolcano in 1808, were lowered yet again. The year 1815 was, as some writers put it, “the year without a summer”. Temperatures that year were about three degrees lower than usual across Europe, which is incredible considering that both volcanoes erupted near the equator.

If the Mount Tambora volcano was a little smaller, the sulfuric acid would have formed in the atmosphere instead, and would have rained back down to the surface as acid rain. But at stratospheric altitudes, far above the clouds, the sulfuric acid haze stayed there for years acting as a kind of sunscreen for our planet.

How does this relate to chemophobia? The combination of the Little Ice Age, the 1808 mystery eruption and the super-colossal eruption of 1815 had cooled the climate to such an extent that the weather in Lake Geneva was terrible in the summer of 1815. Who was there at the time? Mary Shelley, of course, who was staying indoors drinking because the weather was too bad to go boating. Cold, bored and disappointed at the lack of a ‘summer’ holiday, Shelley and her companions set about writing ghost stories instead. Among them was Frankenstein, which featured the original, quintessential stereotype of a mad scientist. The cliché lives on to this day.

Thanks, volcano.

Chemtrails conspiracy theory gets debunked

conds
Contrails or ‘chemtrails’? The myth has just been debunked

Since 1996, there has existed a niche group of conspiracy theorists in western countries that believes that the government (or some other authority) is spraying compounds out the back of commercial/military aircraft for a plethora of reasons. Seventeen percent of Americans believe a hilariously-named “SLAP” project (secret large-scale atmospheric program) exists in the United States, and 2% are ‘certain’ of its existence. Conspiracy theorists photograph normal aeroplane contrails and upload them to the internet, calling them ‘chemtrails’, and using them as evidence of SLAP.

The conspiracy theorists cite “mind control”, “radar mapping”, and “chemical weapons testing” among suspected motives, and they even have detected elevated concentrations of barium and aluminium in soil and atmosphere at certain locations. Conspiracy theorists use these chemical data to support their belief in the SLAP idea.

Just this month, the results of a comprehensive review of all the so-called evidence for contrails was conducted – by an impressive 77 experts in atmospheric chemistry – and they’ve concluded that the conspiracy theory seems highly unlikely to be true.

First, what are contrails?

Contrails are ice-clouds that emerge from the backs of jet engines on aeroplanes. They vary in width, colour and persistence depending on the temperature, air pressure and humidity.

Combustion in jet engines produces two products: water vapour, H2O(g), and carbon dioxide, CO2(g). These gases exit the jet engine and quickly lose momentum, eventually forming a trail in the air behind the aeroplane. The freezing cold temperatures at aeroplane altitudes freezes the water vapour in its tracks (but not the carbon dioxide – it’s not that cold!). A contrail is essentially a trail of snowflakes!

What did the scientists find?

Seventy-seven experts found 100% agreement that SLAP was not the simplest/most likely explanation for the following phenomena:

http://www.ess.uci.edu/~sjdavis/SLAP/
Source: http://www.ess.uci.edu/~sjdavis/SLAP/

Why am I mentioning this?

The ‘chemtrails’ conspiracy emerged as one of the most recent forms of chemophobia. It originated in 1996 when a paper was published by the United States Air Force called Weather as a Force Multiplier: Owning the Weather in 2025 suggested spraying compounds from aeroplanes to help engineer the climate. This seeded the conspiracy, and ebbing public trust of experts/scientists helped it to balloon out of proportion from there.

Until this study was conducted, the scientific community had no credible evidence to the contrary: we had no rebuttal to offer the ‘chemtrails’ crowd. This study finally puts the overwhelming majority of evidence (and 76 of the 77 experts involved) in favour of there being no such SLAP project – and no ‘chemtrails’ to speak of.

Chemophobia

It’s widespread, irrational, harmful, and hard to break. One excerpt from a New York Times article on this story said:

“The goal, the researchers say, is not so much to change the minds of hard-core believers, but to provide a rebuttal — the kind that would show up in a Google search — to persuade other people to steer clear of this idea.”

This study, it seems, is aimed at the neutral 60%. This is exactly how we need to be fighting chemophobia.

Question: Have similar studies been conducted for the other forms of chemophobia that exist?

LIVE Chemophobia Session Thursday 11th August @ 2pm ET

Click to register for the free webinar
Click to register for our free webinar hosted by the American Chemical Society

What can I expect to learn?

  • What does the public think of chemistry, chemicals and chemists?
  • How prevalent is chemophobia?
  • How did we evolve the propensity to become chemophobic?
  • Who were the first chemophobes?
  • What is a “chemical”?
  • Why have chemists’ efforts to fight chemophobia been to no avail?
  • What’s the ultimate cure for chemophobia, and who’s willing to fund it?
  • What can you do as a chemist to combat chemophobia?

Registration is open

Click the above banner to register for the free webinar.

Chemists need to speak the same language as the public

scientist-clipart-science-clip-art-school1
Chemists and the public need to be speaking the same language

Chemicals

The public uses the word ‘chemical’ to mean ‘synthetic substance’. Chemists have traditionally opposed this definition and stuck with ‘substance’ instead, responding with “everything is a chemical” in defence.

Arguing over definitions is futile and avoids the elephant in the room – that there’s been almost no public outreach to support the field of chemistry in the last few decades to counteract growing public skepticism of science (and of chemistry in particular).

Furthermore, it’s even more futile arguing over definitions when the Oxford English Dictionary provides a clear answer to this debate:

chemical (noun) – a distinct compound or substance, especially one which has been artificially prepared or purified

I ask all chemists to embrace the dictionary definition of ‘chemical’ and stop bickering with the public over definitions.

My main concern here is that if “everything is a chemical”, then it therefore follows that ‘chemophobia’ is the fear of everything, which is nonsensical. If we’re going to talk about chemophobia, we’re also going to have to accept the definition of chemical that the OED and the public have been using for a long time: that “chemical” = “artificially prepared substance”.

So what do we call non-synthetic chemicals? Try using a word with less baggage such as “molecule”, “compound”, “substance” or “element” where it’s relevant. By using these words, we avoid the natural=good/artificial=bad divide, which is the central assumption of chemophobia.

Chemophobia

‘Chemophobia’ is an irrational aversion to chemicals perceived as synthetic.

The word ‘chemophobia’ refers to a small subset of people who are not only disenfranchised by science, but who have subscribed to alternative sources of knowledge (either ancient wisdom or – sadly – Google). Many people with chemophobia are protesting against the establishment, and this is particularly evident in the anti-GMO movement. At the core of most people who oppose GMOs is a moral/political opposition to having their food supply controlled by giant corporations. No number of scientific studies concluding the safety and reliability of GMO crops will succeed in persuading them otherwise because the anti-GMO movement is founded on moral/political beliefs, not on science. By throwing science at them, we’re wasting our time.

More important than chemophobia

The Royal Society of Chemistry’s recent report on Public Perceptions of Science showed roughly a 20-60-20 range of attitudes towards chemistry.

206020.png

No matter how the RSC phrased the question, roughly 20% of the UK public who were surveyed indicated a negative attitude towards chemistry, and another 20% showed a positive attitude. The 60% in the middle felt disconnected from the subject – maybe disliked it in school – but felt neutral towards it when asked.

Chemophobia afflicts some people in the bottom 20%. They gave negative word-associations with ‘chemistry’ (e.g. ‘accidents’, ‘dangerous’ and ‘inaccessible’).That bottom 20% group is so vocal (e.g. Food Babe) that they distract chemists from the 60% in who are neutral. The ‘neutral’ crowd is a much larger audience that’s much easier to engage/persuade through outreach efforts. We should focus on talking to them.

Neil deGrasse Tyson has said in interviews that his huge TV hit show COSMOS was aimed at “people who didn’t even know they might like science”. That’s the middle 60%. Brian Cox’s amazing Wonders of the Universe was aimed at a similar audience – but chemistry has nothing similar to offer. We’re engaging those who are already interested (with academic talks and specialist journals) and we’re engaging with the bottom 20% via social media and comments on foodbabe.com… but why haven’t we started engaging the middle 60%, who gets most of their science information from TV? How many chemistry TV icons can you name? Where are the multi-channel launches of big-budget chemistry documentaries*? Chemistry is lagging far behind biology and physics in that regard.

*BBC Four’s Chemistry: A Volatile History (2010) doesn’t count – it was only three episodes long, got no further than ‘the elements’ and was presented by a PHYSICIST!

Focus on the 60% who are ‘neutral’

I ask chemists to focus on addressing the disinterested 60%. From an outreach perspective, this is much more fun and is positive rather than reactionary. By engaging those who feel neutral about chemistry, we might even empower enough of the public to fight chemophobia (online, at least) by themselves – without our direct intervention.

I urge chemists to tell the public what you do in simple terms. Describe your work to the public. Tweet about it. Participate in your university/faculty’s YouTube videos by explaining your work and its relevance. Offer advice as a science correspondent for local media outlets (many universities have ‘expert lines’ – get involved). Give your ‘talk’ at local schools – it make a HUGE difference to students’ perceptions of science. Devote 5% of your working time to doing outreach. As a teacher, I’m practically doing it full-time.

Plus, we urgently need a chemistry TV hero. Could someone do that, too, please?

Registration is open!

live-webinar-pic

About the webinar

James Kennedy will explore the rise of chemophobia, an irrational fear of compounds perceived as ‘synthetic’, and the damage it can cause in this interactive webinar. We’ll examine its evolutionary roots, the factors keeping it alive today and how to fight chemophobia successfully.

What You Will Learn

  • Origins of chemophobia as an irrational psychological quirk
  • Chemistry teachers, Walter White, materialism and advertisements are all fuelling chemophobia today
  • Fighting chemophobia needs to be positive, respectful, multifaceted, and good for consumers

Webinar Details

  • Date: Thursday, August 11, 2016 @ 2-3pm ET
  • Fee: Free to Attend
  • Download Slides: Available Day of Broadcast

Register your attendance here.

slide
Slide from the lecture. Click to register to attend.

ASAP Science Video: This is NOT NATURAL

this is not natural
Click to watch AsapSCIENCE’s video on YouTube

AsapSCIENCE has made an awesome video called This is NOT NATURAL based on the work I’ve been doing on this site. Watch the video and read the comments thread for some insight into the discussion (and misinformation) that spreads online regarding ‘natural’ and ‘healthy’ products.

One of the most upvoted comments is actually a thinly-veiled advertisement for a book called “The Coconut Oil Secret: Why this tropical treasure is nature’s #1 healing superfood”. Click through to their product page and you’ll see why the natural/organic sector needs more regulation, and why consumers need to be better-informed.

Check out the video below, or click here to visit the comments thread on YouTube.

Personal Care Product Ingredients: Are Natural, Chemical Free, and Organic Always Best?

Personal Care Product Ingredients: Are Natural, Chemical Free, and Organic Always Best? Reserach Review Thumbnails
Click to download full article via Research Review NZ/The Parent Centre, NZ
Shaun Holt and I recently co-wrote a paper for Research Review on the ingredients found in personal care products (e.g. shampoos, lotions and cosmetics). We analyse the recent surge in demand for ‘natural’ products and the beliefs that have been driving it.

We’re not saying that natural products don’t work – in fact, quite the opposite. We’re saying that natural products, just like synthetic ones, can be harmful, beneficial or neutral depending on the dose and upon how they’re used. 

Article preview

The terms “natural”, “chemical free” and “organic” are used frequently to market personal care products. However, the exact meaning of these terms is still unclear for consumers, and the use of these terms on labels is still unregulated in some markets. The purpose of this review is to provide clarity on the meanings of these terms and the implications of their application in the marketing of personal care products. The importance of applying a science-based approach to the assessment and recommendation of personal care products is also emphasised. This review is intended as an educational resource for healthcare professionals (HCPs), including nurses, midwives, pharmacists, and pharmacy assistants.

Read the rest of the article here.

‘Chemophobia’ podcast with Sam Howarth

podcast
Click to listen to the podcast via Soundcloud

In a debut podcast, Sam Howarth discusses with chemophobia research-enthusiast and chemistry teacher, James Kennedy, the evolution of fearing chemicals and the people who are driving it behind the scenes.

Sam Howarth is a self-taught nutrition and fitness enthusiast – a fanatic learned through trial and error over 3 years of research and over 10 years of personal struggles with food and body image.

In the podcast, we talk about chemophobia, its origins and the money that keeps it alive.

soundcloud

My iOS app is free until the end of June 2016

IMG_3224.PNG
Screenshot from my free iOS app

I quietly released a simple iOS app back in March 2016. It’s free to download and works on iPhone and iPads running iOS 7.0 or later.

It’s called VCE Study Tools (Chemistry) and it’s the fastest way to browse this website on a mobile device.

Get it from the App Store here.

I’m removing it from the App Store at the end of June 2016 so I can release something a little better later on. If you want the app, go ahead and download it before it’s gone!

James Kennedy's iOS app called VCE Study Tools (Chemistry) is available on the App Store