Tag Archives: chemophobia

This essay was written by AI (artificial intelligence)

The essay below was written by GPT-2, an AI writing bot. I typed the first sentence in blue… and the machine wrote the entire rest of the essay.


Chemophobia is defined as the irrational fear of compounds perceived as synthetic.  Some people feel like they are being sprayed with an unknown chemical, and their eyes, nose, and skin are inflamed, burning, and itchy.   This fear of unknown chemicals has led to several incidents where people have reported being exposed to chemicals they thought were harmless.

The fear of synthetic chemicals is not new, but it has recently increased in popularity. The concern about synthetic chemicals has been exacerbated by a rise in sales of synthetic fragrances, cosmetics, and personal care products. This is partly because companies can now make chemicals that do not have to be tested for safety before they are marketed.

The term ‘synthetic’ is often used as a blanket term for any chemical with an unknown origin. The American Chemical Society, a scientific and professional organization based in the US, defines synthetic as an “electronic or chemical compound that is produced artificially” and is “comparable to a natural molecule” but with the added ability to be made more stable, more potent, and more easily manufactured. These synthetic chemicals, which include plastics, fragrances, pharmaceuticals, and other everyday items, are the latest and the greatest in the war against nature and the destruction of the environment, and we are witnessing their impact in the lives of our most vulnerable citizens.

In order to be considered as synthetic, the chemical must meet one of two criteria. First, the chemical must have been produced artificially. A drug that is made by genetically engineered organisms is a synthetic chemical. Another example is a chemical used to make certain pharmaceuticals, including the antibiotics used in humans.

A third definition of synthetic is that the chemical is synthetically produced. This means that the chemical is not naturally occurring or derived from a naturally occurring source.

The Food and Drug Administration is responsible for approving or withholding approval of substances for use in food. This includes both foods and drug products. The FDA will consider many factors in determining whether a substance is a drug or food. These include, but are not limited to: the presence of the substance in the food or drug product, the strength, purity, potency, and composition of the substance; and whether it is necessary for the safety and efficacy of the food or drug product.

A drug must have been approved by the FDA. It is also important to note that if a substance is being used to treat a particular disease or condition, the FDA has the authority to regulate the use of that medication to protect the health and safety of those taking it.

If a drug or food is used in the treatment of cancer or to increase fertility, the FDA may require that the substance be registered for those purposes.

Synthetic chemicals are considered safe by the EPA. Natural chemicals are considered safe to drink. This is a good thing, in my opinion, but there are no tests to prove it. We have no way to know that they are safe to use, and we have no way to know that they aren’t.

When you read the labels on all of the chemicals found in pesticides, you’ll be left with a feeling that you’re eating poison.

In the book ‘Walking Through Toxic Walls,’ author and toxicologist Michael Dourson describes the effects of pesticide residues on humans. He writes that:

“Even low concentrations of pesticide residues are toxic and can cause chronic effects such as infertility, cancer, and reproductive dysfunction. We are all exposed to the same chemical cocktails in our everyday lives, and if any of them cause harm, we need to know about it. We need to be sure we are eating safe foods, using safe cleaners, or using safe household chemicals.”

For some people, organic is not sufficient. They want to be sure their food is healthy, and they want to make sure they are using clean, safe products. Some organic products are organic in name only, and they do not guarantee the quality of the product. The USDA Organic seal is an imperfect means of ensuring product quality, but many people still want to use organic because it means they are doing what’s right for the Earth.

Organic foods are not necessarily healthier. This is why we believe in “Food for Thought.” If you think about your food choices and where you are spending your money, you are spending too much on foods that are processed or chemical laden. And we all know that junk food is just not good for us. So how do you choose to buy organic food?

Our website has a list of organic produce stores, and many of them offer a large variety of organic products. You can click on the logo of any of these stores to learn more about what they offer. The links to the stores are listed in the green bar below, in the “Organic Products” section. You can also check out our list of recommended organic food places and blogs to help you find organic foods closer to home.

(Written by GPT-2, an AI writing machine.)

“Organic” is a farming practice…

 

I started a YouTube channel called Sincerely, Chemicals. It’s inspired by the workshops I’ve been running since 2017 so you can now review the content at home.

Video 2 is below. It’s called “Are Organic Products Safer?”… you already know the answer, but play the 2-minute video to find out why.

If you like these videos, please leave a comment, like and subscribe. That way, I might be encouraged to make more 🙂

P.S. I hope you like the cartoons!

Fighting Chemophobia is now available on Amazon worldwide

fighting chemophobia print run 3 cover
Third edition of Fighting Chemophobia is now available on Amazon.com and Kindle Store

After several hurdles, I’m happy to announce that Fighting Chemophobia is now available on Amazon in both paperback and Kindle editions for international delivery. Amazon.com and three other independent online book vendors have signed up to stock Fighting Chemophobia.

Buy your copy by clicking the links below – or search Amazon.com or your Kindle device for Fighting Chemophobia to download the book.

Signed copies are of this new third edition are of course still available via this website. Click the PayPal link below to order your signed copy.

I’ve been working on some exciting things in the last few months. Watch this space for teasers.

Update (August 2020) – sold out!

Second batch of Fighting Chemophobia is printed in Qingdao, China.

 

The second batch of Fighting Chemophobia books are finished! After a long search, we have finally found two great companies for printing and distribution in China. Dianzan design and printing company has laid the book out with great care and precision and turned Fighting Chemophobia into an excellent-quality product in both hardback and paperback editions. The 80 gsm Dowling paper feels great, and there are even some full-page colour images scattered throughout the book. Shunfeng Express is handling cheap, quick shipping and is currently achieving 2-day deliveries within China. They predict  7-day delivery times internationally.

This second batch is higher quality than the first. I’m sure you’ll love what these people have produced.

Working with a publisher could have saved me the search for an editor, a printer, a distributor, a marketer and a translator. Self-publishing has been more rewarding in this regard: not only have I selected the people I’ve worked with to bring this book to completion but I’ve probably learned more this way about the process of writing, editing, printing, binding, marketing and distributing a book than if a publisher had handled the entire process on my behalf.

You can buy your signed copy of the second batch of Fighting Chemophobia using the PayPal link below. Click subscribe on this page to receive future (approximately fortnightly) email updates.

Fighting Chemophobia pay now button

Signed Copies of Fighting Chemophobia

banana book.jpg

Chemophobia is an irrational fear of chemicals. It includes the fear of sugar in food, formaldehyde in shampoo and aluminium in vaccines. Fitness bloggers, quack doctors and even small cosmetic companies take advantage of these quirks to sell fake-natural products at elevated prices. Almost always, the same people who spread a fear of ‘chemicals’ also have ‘chemical-free’ products for sale.

Some companies sell “natural”, “organic” and “chemical-free” products to combat the supposed onslaught of chemical pollution in conventional consumer products. Most of these alternative products are no less synthetic, and no safer, than conventional versions despite commanding much higher prices.

Chemophobia is spreading despite our world becoming a cleaner, safer place. People are becoming healthier, and product safety regulations are becoming stricter. The supposed onslaught of chemicals that these special interest groups describe simply isn’t happening.

Perpetrators of chemophobia create unnecessary guilt, stress and anxiety as consumers worry about making the right choices for their family. Consumers are the victims in this battle as pro-natural and anti-natural businesses spread fear about each other’s products.

This book analyses psychological quirks, evolved millennia ago, that prime us to fall victim to chemophobic ways of thinking such anorexia, a fear of vaccines, a fear of fluoridation or a dangerous fear of synthetic medicines. It explores how consumers, teachers, doctors, lawmakers and journalists can fight chemophobia by tackling the social issues that underpin it.

Order your signed copy of Fighting Chemophobia nowbanana book inside.jpg

Fighting Chemophobia pay now button

The ‘deficit model’ only works half the time when you’re fighting chemophobia

focus group sitting at a table chemicals

The “deficit model” is a widely criticized theory that suggests that people who harbor attitudes of negativity or indifference towards science (in this case, chemistry) do so because they are uninformed about the topic (Chinese: 无知).

People’s misinformation might come from a lack of interest, a lack of exposure or an experience of poor science outreach in the past, where incorrect messages were delivered.

The “deficit model” stipulates that if people knew more about science, they’d naturally become more interested in it. Unfortunately, it doesn’t always seem to work, and the ‘model’ is subjected to routine criticism.

Criticisms of the “deficit model”

  • It is patronizing to the public, which alienates them further from science
  • It implies that there is only one coherent, correct narrative of ‘science’
  • It implies that people who don’t like science are misinformed about it
  • Learning science isn’t always fun
  • Being forced to learn something they’re not interested in could reinforce negative attitudes towards science
  • The public is too varied to attempt to give a “one size fits all” theory of science outreach
  • It ignores the fact that members of the public have individual preconceived ideas about science before they’re introduced to new science information
  • It relies too much on monologue/lecturing the public rather than engaging them in dialogues

Employ alternatives to the “deficit model”

Critics of the “deficit model” tend to advocate solutions that involve dialogue (rather than monologue) with the public. Dialogue works better when the particular public audience in question has pre-existing views about the scientific topic being discussed (called ‘affected/partisan’ public groups).

There are four main types of ‘public’ audiences. The table below summarizes each of these types and how to engage with them, and is adapted from Canek Phillips report from 2013.

table 1 mechanisms of deficit model
Table 1 from Phillips & Beddoes (2013). Click to download.
The general public consists of people with diverse views that represent a cross-section of society. In a group, these views cancel out somewhat, hiding the deviation of views. The “deficit model” of monologue delivery is an effective way to engage such a group.

The pure public is a group of people who have no pre-existing ideas about the topic being discussed. The “deficit model” can engage these audiences as well.

The affected public can only be engaged if their pre-existing views are acknowledged and respected beforehand. Dialogue is an excellent way of doing this. Examples of dialogue-based approaches include science shops, public hearings, citizen judies, stakeholder consultations and focus groups.

The partisan public is sometimes led by charismatic leaders or lobby groups. Their views might have been shaped by influential figures (e.g. Mercola, Food Babe) and the pre-existing views (misconceptions) delivered in this way need to be debunked through respectful dialogue rather than monologue.

In short, before telling your audience something, find out whether they have any pre-existing ideas about that topic. If they don’t, then go ahead with a monologue delivery. If they do, then launch a two-way discussion with them, in which you listen and respect their views. Only then, will they respect your opinion as well. ♦

Our senses are hopeless at calculating risk

We overestimate danger when we're not in control, such as flying as a passenger in an aeroplane.
We overestimate danger when we’re not in control, such as flying as a passenger in an aeroplane.
Humans are irrational beings. Smoking kills 480,000 people per year in the United States, while an average of 170 lives are lost to terrorism each year in the same country. Counterintuitively, terrorism receives more media attention than smoking despite having a relatively tiny risk because we’re predisposed to fear dangers imposed by other people more than dangers with which we choose to engage ourselves.

Another great example is aeroplane crashes. Airlines today have an excellent safety record and flying is usually the safest mode of transport (safer than making the same journey by road or rail). We overestimate the dangers of flying on an aeroplane because someone else is in control.

Conversely, because summer heat waves are a natural phenomenon, we’re prone to underestimating their danger: tens of thousands of people die from excessive summer heat each year in the United States alone.

Irrational: we worry about terrorist attacks more than summer heat waves

Our ‘perceived risk’ almost never matches the ‘actual risk’. In the bubble chart below, the area of the circles above the line represent how much we worry about each risk. The area of the circles below the line represents the actual size of the risk in terms of how many people are harmed each year. In many cases, there is a huge disparity between ‘perceived risk’ and ‘actual risk’.

Our perception of risk almost never matches the actual size of the risk. Adapted from work by Susannah Ertrich.
Adapted from work by Susannah Ertrich
The table below shows the factors that increase and decrease our perceptions of risk.
table1 risks template chemicals

Let’s evaluate two examples. First, smoking:

table2 risks template chemicals

Conclusion: people are predisposed to underestimate the risks of smoking (9:1)

Second example: azodicarbonamide (dough improver) added to bread

table3 risks template chemicals

Conclusion: people are predisposed to overestimate the risks of adding azodicarbonamide to bread (1:9)

This strange psychological quirk is one of the roots of chemophobia that I discuss much further in my upcoming book, Fighting Chemophobia (coming out late 2017).

Try it yourselves: use the table to find out whether we’re likely to over-fear or under-fear aeroplane crashes, climate change and parabens in cosmetics. You’ll find that we overestimate the risks of chemical ingredients in our food and products not because they necessarily pose any danger, but because we have this strangely irrational way of assessing risk in the world around us. ♦

全天然香蕉也是来自化学

2013年底,我准备高中有机化学课的时候设计下面的全天然香蕉成份信息图形。

e585a8e5a4a9e784b6e9a699e89589e68890e58886-1.png

这几年,广告上写的三个关键词有全天然」、有机」、无化学成份」。我想通过这张信息图形告诉大家一切都是化学成份做出来的。大自然生产的化学成份比科学家在实验室里能合成的成份复杂多了。为了简洁我写了几十个组成香蕉的重要成份——还有几千个天然有机化学成份没写上。

全天然香蕉里面有一些成份是有毒性的。但是,因为香蕉里面的剂量极少,所以它们对我们的人体是无害的。大自然对剂量的掌握是非常精准的,自然界中,所有的化学成分都有完美的剂量。这个信息图形的意义是告诉大家:

  1. 世界上的一切都是来自化学
  2. 大自然生产的化学成份比合成成份还复杂多了
  3. 大自然生产的产品(如香蕉)并不纯净,因为有上万种成份在其中
  4. 讲毒理学不讲剂量是完全没有道理的

随心分享!

Combatting Chemophobia With Wine

Ava Winery composes fine vintage wines molecule by molecule in the lab
Ava Winery composes fine vintage wines molecule by molecule in the lab

The wines your great-grandchildren might one day drink on Mars will soon be coming to a bottle near you. Ava Winery is a San Francisco-based startup creating wines molecule by molecule, without the need for grapes or fermentation. With complete control over the chemical profile of the product, Ava’s wines can be created safely, sustainably, and affordably, joining the food technology revolution in creating the foods of the future.

galaxy-class_replicator
Ava Wines’ business model is somewhat akin to the Star Trek replicator!

For Ava, foods in the future will be scanned and printed as easily as photographs today. These digital recreations will be more than mere projections; they will be true chemical copies of the originals, capturing the same nutritional profiles, flavors, and textures of their “natural” counterparts. Our canvas will be macronutrients like starches and proteins; our pixels will be flavor molecules. Future generations won’t distinguish “natural” from “synthetic” because both will simply be considered food.

Consider ethyl hexanoate, although scary-sounding it is the very chemical that gives pineapples their characteristic smell and also fruity wines a tropical note. From pineapples, or indeed other organisms, ethyl hexanoate can be extracted much more efficiently. By sourcing more efficient producers of each of hundreds of different components, wines can be recreated as their originals.

Future generations won’t distinguish “natural” from “synthetic” because both will simply be considered food.

In fact, by eliminating the variability of natural systems as well as potential environmental contamination, this digitized future of food can increase the safety, consistency, and nutritional profile of foods. Such food products can reduce overall land and resource use and be less susceptible to climate fluctuations. Indeed this future will see significant reductions in the costs of food production as the cost of the raw ingredients shifts to more efficient sources of each molecule.

Processed with VSCO with s3 preset
100 to 300 compounds are responsible for the full flavour of a wine.

So why wine?

We knew there would be a controversial love/hate relationship with our mission to build wine molecule by molecule. To the elite who value the high-end wine experience, our molecularly identical creation of the $10,000+ bottle of 1973 Chateau Montelena will be a mockery; but to the public, the $10,000 turned $20 bottle will be a sensation. To the purists who still believe organic is the only way to eat or drink healthily, our wine will get “some knickers in knots”; but to the nonconformists, our wine will be a contemporary luxury made by contemporary technology.

In short, wine is just the beginning. Soon, Ava hopes to build more food products molecule by molecule further blurring these lines between natural vs. synthetic while simultaneously making luxury items available for all. With our groundwork, the Star Trek future of food might be closer than we thought.

Friluftsliv: Norway’s search for true nature

There’s an interesting psychological quirk that makes us yearn for a benevolent, caring Mother Nature that can cure our ailments without any side effects. Academics call it the “naturalness preference” or “biophilia”, and the Norwegians call it “friluftsliv” (literally: free-air-life).

Friluftsliv began in 18th century Scandanavia as part of a romantic “back-to-nature” movement for the upper classes. Urbanisation and industrialisation in the 19th century disconnected Norwegians from a natural landscape to which they’d been so interconnected for over five thousand years.

Norway’s sparse population, vast landscapes and midnight sun (in the summer months, at least) make it an excellent place for hunting and exploration. These ideal conditoins produced some of the greatest trekkers and hikers the world has ever seen. I’ll show you two heart-warming examples.

The first is Norway’s infamous explorer Fritjof Nansen, who (very nearly) reached the north pole in 1896 as part of a three-year expedition by ship, dog-sled and foot. When world war one broke out, Nansen put his trekking knowledge into practice by helping European civilians escape the perils of war and move to safer places. He facilitated several logistical operations in the early 20th century that saw the movements of millions of civilians across Europe. When famine broke out in Russia in 1921, he arranged the transportation of enough food to save 22 million people from starvation in Russia’s remotest regions. Deservedly, he was awarded the Nobel Peace Prize in 1922 for his efforts.

The second example is Norway’s Roald Amundsen, who was the first person to reach the south pole in 1911. Nansen lent his ship, Fram, to Amundsen for a north pole expedition in 1909. Before Amundsen set sail, however, he learned that two rival American explorers – each accompanied by groups of native Inuit men – had already reached the north pole and were disputing the title of “first discoverer” among themselves. When Amundsen finally did set sail, he took Nansen’s Fram vessel to Antarctica instead, where he and his team disembarked and trekked a successful round-trip to the south pole. While Amundsen admits he was inspired by Nansen’s successful polar expeditions, I’m sure that Norway’s vast landscapes, summer sun and long-standing tradition of “Allemansrätten” (the right to traverse other people’s private land) also contributed to Amundsen’s yearning for friluftsliv: the obsessive search for a truly untouched wilderness. (Amundsen 1927)

The world’s first tourist organisations were founded in Norway (1868), Sweden (1885) with the goal of helping Scandinavian elites in their search for true nature. When the Industrial Revolution brought many indoor, sedentary factory jobs to Scandinavia, workers craved the outdoors that their culture had been in harmony with for thousands of years. Elites in the late 19th century signed up to go on expeditions to escape encroaching urbanisation. Later, in 1892, a group of Swedish soldiers founded the non-profit organisation Friluftsfrämjandet, which provided outdoor recreational activities to the labouring classes with a particular emphasis on giving free skiing lessons to children. Thanks to Friluftsfrämjandet, and the working-time legislations that came into play in the early 20th century, the middle and lower classes were finally able to pursue their obsession with finding nature, or friluftsliv.

“…[W]e arrange activities to win great experiences, together. We hike, bike, walk, climb, paddle, ski and skate together. We train the best outdoor guides and instructors in Sweden. And we have fun together!” (Friluftsfrämjandet 2017)

Hans Gelter, Associate Professor at Luleå University of Technology, writes that even friluftsliv has become commodified in the age of consumerism. He claims that the high prices commanded for outdoor equipment and transportation to remote places act as a barrier between hikers and the nature they claim to be seeking. (Gelter 2000) In Deep Ecology: Living as if Nature Mattered (1985), Timothy Luke argues that outdoor pursuits are now more about testing fancy equipment than finding a deep connection with Mother Nature. Snowboarding is now more about testing the latest boards and wearing eye-catching outfits than it is about enjoying pristine mountain vistas. Golf is now as much about donning luxury clothing brands and using expensive golf clubs as it is about enjoying the outdoors. Even many shower gels and body washes now contain a drop of lemon essence or avocado oil – for which you pay an extra dollar – that adds nothing to the utility of the product. We do this because we crave nature in an industrialised world.

My book Fighting Chemophobia (coming at the end of 2017) is approaching 60,000 words in length. Copious reading and lively discussions with many colleagues and academics is helping to shape the stories in the book.

Follow me on twitter to stay up-to-date with the book’s progress.

Fighting Chemophobia

Bananas contain unpronounceable ingredients, too. Ingredients of an All-Natural Banana by James Kennedy

It’s been exactly three years since I uploaded the original banana poster.

In 2014, I soon followed up with podcasts, radio appearances, press interviews, a T-shirt Store and twelve more fruit ingredient labels. I’ve done six more customised fruit ingredients labels for private clients. The images have since appeared in textbooks, corporate promotional material, YouTube videos, T-shirts, mugs and aprons.

Momentum built in 2015. Parodies emerged online, and a copycat image appeared in one Chemistry textbook. I started writing about chemophobia and consulting with experts on how to address the issue. In short, it’s very, very complicated, and has deep evolutionary origins. I set a goal to understand chemophobia and provide a roadmap to tackle it effectively.

In 2016, my voluminous OneNote scribblings turned into a book. I have a first draft saved on OneDrive (thank you for keeping it safe, Microsoft) and I’ll be proofreading it on an long-haul intercontinental flight for you later today.

My next book, tentatively titled “Fighting Chemophobia”, will be published in late 2017.

I promise that my book “Fighting Chemophobia” will contain the following:

  • Stories you can share on a first date;
  • Maths – but just a little;
  • Chemistry – but not too much;
  • A deep exploration of chemophobia’s roots;
  • Tangible solutions to chemophobia;
  • More stories. Lots of true stories.

This “Fighting Chemophobia” book is for:

  • Educated people who are interested in a fascinating, growing social phenomenon;
  • People who want to settle the ‘natural’ vs ‘artificial’ debate;
  • Chemistry people;
  • People who love reading.

To get your hands on a copy, subscribe to this blog for email updates. Just click ‘Follow’ somewhere on this page (its location depends on which device you’re using).

I promise that throughout 2017, you’ll receive teasers, snippets and discarded book fragments via this blog to get you excited.

LIVE Chemophobia Session Thursday 11th August @ 2pm ET

Click to register for the free webinar
Click to register for our free webinar hosted by the American Chemical Society

What can I expect to learn?

  • What does the public think of chemistry, chemicals and chemists?
  • How prevalent is chemophobia?
  • How did we evolve the propensity to become chemophobic?
  • Who were the first chemophobes?
  • What is a “chemical”?
  • Why have chemists’ efforts to fight chemophobia been to no avail?
  • What’s the ultimate cure for chemophobia, and who’s willing to fund it?
  • What can you do as a chemist to combat chemophobia?

Registration is open

Click the above banner to register for the free webinar.

Chemists need to speak the same language as the public

scientist-clipart-science-clip-art-school1
Chemists and the public need to be speaking the same language

Chemicals

The public uses the word ‘chemical’ to mean ‘synthetic substance’. Chemists have traditionally opposed this definition and stuck with ‘substance’ instead, responding with “everything is a chemical” in defence.

Arguing over definitions is futile and avoids the elephant in the room – that there’s been almost no public outreach to support the field of chemistry in the last few decades to counteract growing public skepticism of science (and of chemistry in particular).

Furthermore, it’s even more futile arguing over definitions when the Oxford English Dictionary provides a clear answer to this debate:

chemical (noun) – a distinct compound or substance, especially one which has been artificially prepared or purified

I ask all chemists to embrace the dictionary definition of ‘chemical’ and stop bickering with the public over definitions.

My main concern here is that if “everything is a chemical”, then it therefore follows that ‘chemophobia’ is the fear of everything, which is nonsensical. If we’re going to talk about chemophobia, we’re also going to have to accept the definition of chemical that the OED and the public have been using for a long time: that “chemical” = “artificially prepared substance”.

So what do we call non-synthetic chemicals? Try using a word with less baggage such as “molecule”, “compound”, “substance” or “element” where it’s relevant. By using these words, we avoid the natural=good/artificial=bad divide, which is the central assumption of chemophobia.

Chemophobia

‘Chemophobia’ is an irrational aversion to chemicals perceived as synthetic.

The word ‘chemophobia’ refers to a small subset of people who are not only disenfranchised by science, but who have subscribed to alternative sources of knowledge (either ancient wisdom or – sadly – Google). Many people with chemophobia are protesting against the establishment, and this is particularly evident in the anti-GMO movement. At the core of most people who oppose GMOs is a moral/political opposition to having their food supply controlled by giant corporations. No number of scientific studies concluding the safety and reliability of GMO crops will succeed in persuading them otherwise because the anti-GMO movement is founded on moral/political beliefs, not on science. By throwing science at them, we’re wasting our time.

More important than chemophobia

The Royal Society of Chemistry’s recent report on Public Perceptions of Science showed roughly a 20-60-20 range of attitudes towards chemistry.

206020.png

No matter how the RSC phrased the question, roughly 20% of the UK public who were surveyed indicated a negative attitude towards chemistry, and another 20% showed a positive attitude. The 60% in the middle felt disconnected from the subject – maybe disliked it in school – but felt neutral towards it when asked.

Chemophobia afflicts some people in the bottom 20%. They gave negative word-associations with ‘chemistry’ (e.g. ‘accidents’, ‘dangerous’ and ‘inaccessible’).That bottom 20% group is so vocal (e.g. Food Babe) that they distract chemists from the 60% in who are neutral. The ‘neutral’ crowd is a much larger audience that’s much easier to engage/persuade through outreach efforts. We should focus on talking to them.

Neil deGrasse Tyson has said in interviews that his huge TV hit show COSMOS was aimed at “people who didn’t even know they might like science”. That’s the middle 60%. Brian Cox’s amazing Wonders of the Universe was aimed at a similar audience – but chemistry has nothing similar to offer. We’re engaging those who are already interested (with academic talks and specialist journals) and we’re engaging with the bottom 20% via social media and comments on foodbabe.com… but why haven’t we started engaging the middle 60%, who gets most of their science information from TV? How many chemistry TV icons can you name? Where are the multi-channel launches of big-budget chemistry documentaries*? Chemistry is lagging far behind biology and physics in that regard.

*BBC Four’s Chemistry: A Volatile History (2010) doesn’t count – it was only three episodes long, got no further than ‘the elements’ and was presented by a PHYSICIST!

Focus on the 60% who are ‘neutral’

I ask chemists to focus on addressing the disinterested 60%. From an outreach perspective, this is much more fun and is positive rather than reactionary. By engaging those who feel neutral about chemistry, we might even empower enough of the public to fight chemophobia (online, at least) by themselves – without our direct intervention.

I urge chemists to tell the public what you do in simple terms. Describe your work to the public. Tweet about it. Participate in your university/faculty’s YouTube videos by explaining your work and its relevance. Offer advice as a science correspondent for local media outlets (many universities have ‘expert lines’ – get involved). Give your ‘talk’ at local schools – it make a HUGE difference to students’ perceptions of science. Devote 5% of your working time to doing outreach. As a teacher, I’m practically doing it full-time.

Plus, we urgently need a chemistry TV hero. Could someone do that, too, please?

Registration is open!

live-webinar-pic

About the webinar

James Kennedy will explore the rise of chemophobia, an irrational fear of compounds perceived as ‘synthetic’, and the damage it can cause in this interactive webinar. We’ll examine its evolutionary roots, the factors keeping it alive today and how to fight chemophobia successfully.

What You Will Learn

  • Origins of chemophobia as an irrational psychological quirk
  • Chemistry teachers, Walter White, materialism and advertisements are all fuelling chemophobia today
  • Fighting chemophobia needs to be positive, respectful, multifaceted, and good for consumers

Webinar Details

  • Date: Thursday, August 11, 2016 @ 2-3pm ET
  • Fee: Free to Attend
  • Download Slides: Available Day of Broadcast

Register your attendance here.

slide
Slide from the lecture. Click to register to attend.